BOP Tethering and Motion Measurements – Enabling Safe Subsea Well Decommissioning

J. Lodhia

AOG
March 2019
BOP Tethering and Motion Measurements – Enabling Safe Subsea Well Decommissioning

14th March 2019
J Lodhia

Learn more at www.2hoffshore.com
Contents

- Subsea well P&A challenges
- Benefits of BOP tether system
- Specification of BOP tether system
- In-field measurements to validate response
- Conclusions

Learn more at www.2hoffshore.com
P&A Challenges for Older Wells

- Typically old (pre-2000) 30” conductor designs
- Usually not designed for fatigue loading
- Lack of data
- 6th generation semi-submersibles in shallow water
- Prior fatigue damage?

Learn more at www.2hoffshore.com
1st Case Study – Conventional P&A Approach

- Well Location: Offshore Australia
- Water Depth: 68m
- Drilling Rig: 6th generation moored semi-submersible
- Wellhead System: Rigid lockdown wellhead
- Originally installed approx. 2005

Learn more at www.2hoffshore.com
Wellhead & Conductor Stack-up

- **30” x 1.0” Conductor**
- **20”x13-3/8” Surface Casing**
- Conductor and surface casing cemented to mudline
- Combined wet weight of LMRP + BOP + Subsea Tree = 232.7Te
- 25 day duration = 250 days target life (0.68 years) FOS=10

![Diagram of Wellhead & Conductor Stack-up](image)

Learn more at www.2hoffshore.com
Unfactored Fatigue Results

Min Fatigue Life is 11 days and does not meet Target Life.
Mitigation Options

- Reduce conservatisms – only applicable for marginal designs

- More accurate data

- Conventional remedial actions include:
 - BOP modifications – lighter BOP however can be costly
 - Different vessels – availability and cost implications

Learn more at www.2hoffshore.com
BOP Tether System

Primary aim is to reduce BOP stack motions.

Learn more at www.2hoffshore.com
Effect of BOP Tether on Bending along Conductor

Approx. 3 times reduction in bending load

Learn more at www.2hoffshore.com
Unfactored Fatigue Results with BOP Tether System

Fatigue lives improved by a factor of 185x

Learn more at www.2hoffshore.com
Specifying BOP Tether System
Key Considerations

- Consider how any change in the design will affect the overall tether wire stiffness:
 - Clump weight position
 - Tether wire length
 - Tether wire OD / Maximum Breaking Force

- How does tether wire pre-tension impact the efficiency of the system?

- Monitoring system can provide further assurance

- Bottom clump weight stability on seabed

- Axial loading resistance on conductor – Any additional axial load?

Learn more at www.2hoffshore.com
Effect of Clump Weight Position

- 3 distances considered:
 - 13.5m
 - 41.0m
 - 45.0m

- Longer tether wire reduces stiffness

- System response is sensitive to wire stiffness

Learn more at www.2hoffshore.com
Effect of Tether Pre-tension & Wire OD

- Tether wire OD reduced – Wire stiffness reduces by 87%

- 3 pre-tensions considered:
 - 5 kips
 - 10 kips
 - 15 kips

- Clump weight positions remains constant

- Wire pre-tension has little effect on system response

- System response is sensitive to wire stiffness

Learn more at www.2hoffshore.com
Final Fatigue Results with BOP Tether System
2nd Case Study – Monitoring BOP Stack Motions

- Well Location: Offshore Australia
- Subsea well utilised a BOP tether system
- Motion monitoring equipment installed subsea onto the BOP frame and subsea tree
- Monitoring equipment recorded the BOP stack and subsea tree movement and accelerations
- Data available pre- and post-BOP tether system installation for multiple deployments

Learn more at www.2hoffshore.com
Subsea Tree Accelerations – 1st Deployment

STANDARD DEVIATION OF ACCELERATION & ANGULAR RATES
11-13 July

- X Acceleration
- Y Acceleration
- X-Z Angular Rate
- Y-Z Angular Rate
- Noise Level

Learn more at www.2hoffshore.com
Subsea Tree Accelerations – 2nd Deployment

Subsea Tree Monitoring
STANDARD DEVIATION OF ACCELERATION & ANGULAR RATES
22-31 July

Learn more at www.2hoffshore.com
Observations From In-field Measurements

- Use of the BOP tether system provided 2.5x reduction in motions

- Consistent reduction in BOP stack motions observed over multiple deployments

- The observed reduction in motions directly leads to improved fatigue performance

Learn more at www.2hoffshore.com
Summary

- Use of 5/6th generation rig for subsea well P&A decommissioning may lead to fatigue complications

- Standard remedial actions may be insufficient or too costly

- BOP tether system offers a direct improvement on wellhead fatigue by reducing BOP stack motions

- Must consider wire stiffness when designing the BOP tether system

- In-field motion measurements confirm the effectiveness of a BOP tether system in reducing stack motions

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com