Shallow Water Well
Conductor Life Extension
Strategy
Lihui Li

SUT China
October 2018
Agenda

- Background
- Pre-Assessing
- Detailed Analysis & Repair
- Conclusions

Learn more at www.2hoffshore.com
Background
Background

Wellhead & Tree

Surface Casing
Conductor

Annular Liquid Level

Top of Cement

Intermediate Casing

MSL

Guide/Centralizer

Mudline

Learn more at www.2hoffshore.com
Background

North Sea

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Fixed Platform</td>
<td>~190</td>
</tr>
<tr>
<td>Service Life > 15 years</td>
<td>~120</td>
</tr>
<tr>
<td>Service Life > 25 years</td>
<td>~50</td>
</tr>
</tbody>
</table>

Gulf of Mexico

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Fixed Platform</td>
<td>~4000</td>
</tr>
<tr>
<td>Service Life > 30 years</td>
<td>~1200</td>
</tr>
<tr>
<td>Service Life > 40 years</td>
<td>~400</td>
</tr>
</tbody>
</table>

Ref: Wall Street Journal

Learn more at www.2hoffshore.com
Corrosion has been found in some of the well conductors in South China Sea, eg:

- **Yacheng13-1 Gas Field**: Heavily corroded occurs at the tidal zone.
- **Weizhou11-4 Oil Field**: Perforation is found in some conductors.
- **Huizhuo26-1 Oid Field**: Heavily corroded occurs on the conductors.

Ref:
Research and Application of Platform Baseline Management

Learn more at www.2hoffshore.com
Localized Conductor Defects

Conductor Crack

Pitting Corrosion

Perforations

Guide Failure

Learn more at www.2hoffshore.com
Generalized Wall Loss

<table>
<thead>
<tr>
<th>Elevation above Seabed (m)</th>
<th>WT along Conductor Circumference (mm)</th>
<th>Mean WT Loss (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>North 18.3 East 19.2 South 19.4 West 20.6 Mean 19.4</td>
<td>6.0 23.7</td>
</tr>
<tr>
<td>26</td>
<td>North 19.7 East 18.9 South 19.7 West 19.2 Mean 19.3</td>
<td>6.1 23.8</td>
</tr>
<tr>
<td>24</td>
<td>North 17.5 East 20.0 South 20.3 West 19.5 Mean 19.3</td>
<td>6.1 23.8</td>
</tr>
<tr>
<td>22</td>
<td>North 16.6 East 18.3 South 20.0 West 13.7 Mean 17.1</td>
<td>8.3 32.5</td>
</tr>
<tr>
<td>20</td>
<td>North 17.1 East 18.9 South 18.3 West 14.9 Mean 17.3</td>
<td>8.1 31.9</td>
</tr>
<tr>
<td>18</td>
<td>North 9.9 East 10.3 South 9.7 West 11.4 Mean 10.3</td>
<td>15.1 59.3</td>
</tr>
<tr>
<td>16</td>
<td>North 12.6 East 12.6 South 10.3 West 11.4 Mean 11.7</td>
<td>13.7 53.9</td>
</tr>
</tbody>
</table>

Conductor OD (mm)	762
Conductor ID (mm) | 25.4
Maximum WT (mm) | 19.4
Minimum WT (mm) | 10.3

Learn more at www.2hoffshore.com
Conductor Life Extension Strategy

Group ‘Similar’ Defects

Pre-Assessment

Detailed Assessment

Repair or Mitigation

Learn more at www.2hoffshore.com
Pre-Assessing Defects
Pre-Assessing Defects

- Localized defects
 - Qualitative Risk Assessment
 - System Identification and Description
 - Hazard Identification
 - Consequence Identification
 - Description of the Risk

Learn more at www.2hoffshore.com
Pre-Assessing Defects

- Generalized Wall Loss
 - Screening Tool

Learn more at www.2hoffshore.com
Detailed Assessment
Detailed Assessment

- Calculate global bending loads for operational and extreme conditions
- Calculate axial loads through the conductor for production and work-over scenarios

Local Defects: Estimate local combined stresses at the defect location

Generalized Wall Loss: Conduct a conductor stability evaluation

Conductor Repair or Threat Mitigation

Learn more at www.2hoffshore.com
Global FEA – Bending Moments

- Equivalent pipe model represented by beam elements;
- Laterally supported at guide locations;
- Nominal and extreme wave and currents simulated.

Learn more at www.2hoffshore.com
Axial Load Determination

Axial Load on the Conductor during Well Construction

- Land and cement 20 inch surface casing
- Land BOP
- Land and cement 13-3/8 inch casing
- Land and cement 9-5/8 inch casing
- Land and anchor 7 inch tubing
- Remove BOP
- Land tree
- Remove tree
- Land HWOU
- Pull 7" Tubing

Well Construction | Production | Work-Over

Learn more at www.2hoffshore.com
Local FEA

- Develop local FE model;
- Identify boundary conditions;
- Apply global bending and axial loads.

Learn more at www.2hoffshore.com
Local Sleeve Repair

Learn more at www.2hoffshore.com
Generalized Wall Loss

- The key concern for the conductor with weakened walls is the decrease in stability.
- Conductor stability is assessed under the calculated buckling load as per recommendations provided by Stahl and Baur\(^1\).

1. Stahl and Baur – “Design Methodology for Offshore Platform Conductors”, Published by Society of Petroleum Engineers (SPE), Paper OTC 3903, Published at OTC 1980.

Learn more at www.2hoffshore.com
Span Supports

Guides

Buckling

Learn more at www.2hoffshore.com
Conclusions
Conclusions

- It is important to understand the role of well conductors in well integrity;
- Any repair design should be based on a detailed assessment of all operational and extreme loads;
- Generalized wall loss must be viewed from the standpoint of conductor stability.

Learn more at www.2hoffshore.com
Questions?
Thank you