Innovative Flexible Riser Monitoring
G. Gardner – 2H, B. Taylor - Pulse

OPT
February 2018
Innovative flexible riser monitoring

Gilles Gardner
Technical Manager
2H Offshore Engineering

Brian Taylor
Global Head of Sales
Pulse Structural Monitoring

Learn more at www.2hoffshore.com
Agenda – Overview

- Un-Bonded Flexible Pipe
- Goals of Flexible Integrity Management System
- Overview of Installed Base
- Flexible Riser Threats
 - Focus areas
 - Inspection
- FlexAssure: Monitoring
 - Overview
 - Development and Qualification
 - Benefits and Limitations
 - Case Study
- FlexAssure: Curvature Monitoring
 - IntegriStick
 - Remnant Life Assessment

Learn more at www.2hoffshore.com
Un-BondedFlexible Pipe

<table>
<thead>
<tr>
<th>LAYER</th>
<th>MATERIAL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL SHEATH</td>
<td>POLYMER</td>
<td>EXTERNAL FLUID BARRIER</td>
</tr>
<tr>
<td>TENSILE ARMOUR</td>
<td>CARBON STEEL</td>
<td>TENSILE STRENGTH</td>
</tr>
<tr>
<td>ANTI-WEAR</td>
<td>POLYMER</td>
<td>REDUCE FRICTION</td>
</tr>
<tr>
<td>TENSILE ARMOUR</td>
<td>CARBON STEEL</td>
<td>TENSILE STRENGTH</td>
</tr>
<tr>
<td>ANTI-WEAR</td>
<td>POLYMER</td>
<td>REDUCE FRICTION</td>
</tr>
<tr>
<td>PRESSURE ARMOUR</td>
<td>CARBON STEEL</td>
<td>HOOP STRENGTH</td>
</tr>
<tr>
<td>PRESSURE SHEATH</td>
<td>POLYMER</td>
<td>INTERNAL FLUID BARRIER</td>
</tr>
<tr>
<td>CARCASS</td>
<td>STAINLESS STEEL</td>
<td>COLLAPSE RESISTANCE</td>
</tr>
</tbody>
</table>

Annulus – Space between the two extruded polymer fluid barriers
Protects the Carbon Steel Wires which are not Corrosion Resistant

Learn more at www.2hoffshore.com
Goals of Flexible Riser Integrity Management System

- To improve integrity and reliability of flexible risers
- Prevent failure of flexible risers through early detection
- Enable safety assessment monitoring and plan predictive maintenance
- To accurately assess remaining service life
Flexible Pipe: Overview of Installed Base

- ~ 17,600 flexible pipes in service
- > 189,552 flexible pipe operational years
- 93% of all flexible pipe have design pressure ≤ 413 bar
- 93% of all flexible pipe is ≤10-inch (ID)
- 70% pipes are used for design temperature less than 80° C
- 74% of all flexible risers in water depths ≤ 1,000 m WD

Source: Oil and Gas UK
Flexible Riser Threats

Unbonded Flexible Risers
DAMAGE & FAILURE CASES, GROUPED BY PIPE LAYER / COMPONENT
SureFlex JIP 2017

Source: Oil and Gas UK
Flexible Riser Threats: Outer Sheath

- External – Environmental Barrier
- Robust - Polymer Extruded Layer ~8-14mm
- Breach = Flooded Annulus ~ Reduced Life
- Breach = Carbon Steel Layers in Seawater
- Multiple Outer Sheaths
Flexible Riser Threats: Tensile Armours

- Provide Tensile Capacity
- Two/Four Helically Crosswound Layers
- Carbon Steel Wires
- Material Selected H$_2$S or CO$_2$ Content
- Corrosion - Fatigue

Learn more at www.2hoffshore.com
Flexible Riser Threats: Tensile Armours – Inspection

- Direct Inspection Not Possible
- Non Destructive
- Ultrasonic – Proven with Extensive Track Record
- Couplant – Confirms Flooding
- Wire Thickness Measurements
- Wideband (ART) No Couplant Required

Learn more at www.2hoffshore.com
Flexible Riser Threats: Monitoring

Learn more at www.2hoffshore.com
FlexAssure: Monitoring – Motion and Acoustic

Wire break causes unique structural vibration and acoustic emission

Five sensors (basic configuration):
- Acceleration X/Y/Z
- Gyroscope (axial rotation)
- Microphone

Data Analysis Methodology
- Threshold level defined per sensor
- If four/five sensors above threshold:
 • Potential break and alarm raised
 • Confirmation by human evaluation

Learn more at www.2hoffshore.com
FlexAssure: Development & Qualification

Operator promoted development of multiple technologies:
- Inspection and monitoring
- Built-in and retrofit

Pulse Qualification Tests:
- Lab Tension-Tension Test
- Lab Dynamic Fatigue Test
- Offshore Background Noise Test

Learn more at www.2hoffshore.com
FlexAssure: Development Tension–Tension Static Test

- Only Tension Loading
 - No Pressure
 - No Bending
- Range of sensors were used in the test to capture as many parameters of riser failure as possible.
- Sensors not marinised (prototype).
- Cables and connectors designed for laboratory tests.
- Sensors logged directly to computer.
FlexAssure: Development Tension-Tension Static Test Arrangement

CONNECTOR A
SIMPLY SUPPORTED

CONNECTOR B
FULLY FIXED

Coating removed

Outer Armour Wire Layer
Inner Armour Wire Layer

40 - 80Te

1.0m

4.3m

1.2m

6inch

FLEXIBLE RISER

Learn more at www.2hoffshore.com
FlexAssure: Development Tension–Tension Static Test Methodology

- Improved understanding
- Different technologies trialled
- Cuts induced controlled break

Armor Wires Break

Learn more at www.2hoffshore.com
FlexAssure: Development Tension–Tension Static Test Results

Note: Failure threshold defined based on offshore background noise recorded at a later test stage.

Learn more at www.2hoffshore.com
FlexAssure: Development Dynamic Fatigue Test

Description

- Flexible Riser Qualification for Operator (part of full process)
 - Fatigue: damage ≤0.1
 - Strength: sustain severe environments and operational loading
- Validate Vendor methodology to estimate damage 1.0
- Improve understanding of wire break phenomena

- Test per Standards
 - N-2409 (Operator)
 - API-17B
- Loading combination blocks
 - Pressure
 - Tension
 - Bending
- 6in Production Riser

Learn more at www.2hoffshore.com
FlexAssure: Development Dynamic Fatigue Test
Arrangement

- Same sensors with removal of extra arm extension
- Introduction of similar marinised version
- Introduction of reference sensor

Learn more at www.2hoffshore.com
FlexAssure: Development Dynamic Fatigue Test
Arrangement

- 1.5 years of testing
- Weekly reports of events
- Gamma ray inspection
 - At damage 0.3 > no breaks
 - At damage 0.8 > no breaks

Pipe Region
FlexAssure: Development Dynamic Fatigue Test Results

Note: Utilisation refers to number of time above threshold

Learn more at www.2hoffshore.com
FlexAssure: Development Dynamic Fatigue Test
Results and Conclusions

- **Blind Test**
 - Number of breaks identified during dissection was only informed after disclosure of detected breaks

- **All breaks detected**
 - 45 breaks
 - ~4 in the inner armour layer
 - Lab estimate based on acoustic measurement was 10-20
FlexAssure: Benefits & Limitations

Key Benefits
- Early detection of progressive armour wire failure prior to catastrophic failure
- Retrofit-able
- Marinised
- Intrinsically Safe (Exd rated)

Associated benefits
- Motion and acoustic record can be used for further operational response evaluation
- May be integrated with complimentary monitoring

Limitations and Challenges
- Only detects a failure as it occurs, cannot retrospectively identify a failure.
 - Magnetic inspection tool typically recommend to set base line and validate eventual breaks identified (e.g. MAPS).
- Max detection range/distance is unknown.
 - Failures expected near Bend Stiffener
- Background noise/acceleration may lead to “detection failure” or “false alarms”.
 - Multi sensor and human evaluation to address that.

Learn more at www.2hoffshore.com
FlexAssure: Case Study

- External Turret FPSO
- Water Depth 970m
- Hang-Off Above Water
- System retrofitted to installed risers
- 5 risers being monitored

Learn more at www.2hoffshore.com
FlexAssure: Case Study

- Data screening and validation
 - Threshold definition per sensor (and riser)
 - 5 standard-deviation used as starting point
- Events generally filtered as
 - **green** events:
 - 1 sensor above thresholds.
 - **red** events:
 - 4 of 5 sensors above thresholds – alarm.
- Log Rate 2000/s;
- Statistics and record 1/s (std-dev, min, mean, max);
- Reference Sensor
 - Located on turret outer radius. Relative acceleration between risers hang-off and reference sensor during FPSO pitch and roll will be different.

Learn more at www.2hoffshore.com
FlexAssure: Curvature Monitoring Remnant Life Assessment

- INTEGRIStick – Dynamic Curvature Sensors
- Attached to outside of riser
- Measures change in riser curvature in two planes
- Results used to calibrate global/local models
FlexAssure: Curvature Monitoring
Remnant Life Assessment

- Measured curvature and angles – identify trends
- Combined with measured environmental data
- Additional input for remnant life assessment
- Reduction of conservatisms

Learn more at www.2hoffshore.com
Summary

- Flexible risers have complex failure modes
- Tensile armour wires are key structural component
- FlexAssure provides innovative monitoring solution
- Provides early detection of failure
- Avoids catastrophic failure
- Combination of acoustic and motion sensors
- IntegriStick monitors curvature
- Data can be used for further operational evaluation
- System can be retrofitted on existing riser system

Learn more at www.2hoffshore.com
Questions

Gilles Gardner
Technical Manager
2H Offshore Engineering
gilles.gardner@2hoffshore.com

Brian Taylor
Global Head of Sales
Pulse Structural Monitoring
brian.taylor@pulse-monitoring.com