Steel Lazy Wave Risers – A Step Change in Riser Technology for the NWS

T. King Lim, D. Deka, E. Tellier, H. Howells

AOG
March 2018
Steel Lazy Wave Risers
A Step Change in Riser Technology for the NWS

Tze King Lim, Dhyan Deka, Elizabeth Tellier, Hugh Howells
AOG 2018, Perth
15th March 2018

Learn more at www.2hoffshore.com
Agenda

- Lazy wave risers – an enabling technology for the North West Shelf (NWS)
- Design drivers
- Configuration development
- Riser strength and fatigue
- Installation feasibility
- Reducing conservatism through measurements (STREAM JIP)
- Summary

Learn more at www.2hoffshore.com
Riser Design in the NWS

The Australian NWS is a challenging design environment:

- Directional swell seastates
- Tropical cyclones
- 10,000 year design criteria
- Calcareous soils
- Lack of existing subsea architecture
- Large diameter gas lines
- Long service lives
- Harsh chemical environment
- Temperature and pressure ranges

Flexible risers are limited by size, fluid pressure and long service requirements
Why SLWRs for NWS

- Steel catenary risers (SCRs) could be a viable solution:
 - Simple concept and long track record
 - SCRs are subject to fatigue issues, especially with FPSOs or semisubs

- Steel lazy wave risers (SLWRs) are a feasible solution:
 - Robust configuration
 - Allows flexibility (vessel type and top loads)
 - Field proven on BC10, Blind Faith, Julia. Liza & Mad Dog2 will have SLWRs
 - Overall cost of hull, mooring and riser can be lowered

Some operators have developed feasible SLWR configurations for NWS 1000m+ fields

Learn more at www.2hoffshore.com
Lazy Wave vs. SCR

Pros:
- Reduces top tension
- Decouples (partially) vessel and TDZ movements
 - Improves strength performance 10-30%
 - Fatigue performance improves 3-10x
- Permits tieback to vessels with poor motion characteristics e.g. semi-sub or FPSO
- More riser configuration and heading arrangements allowed (for lateral and vertical clearance)

Cons:
- Installation (and hardware) costs
- Increased design complexity

Learn more at www.2hoffshore.com
SLWR Suitability for North West Shelf

- Swell seastates, cyclones
 - SLWR reduces TDZ compression and fatigue allowing large diameters, long design lives (40+ years)
 - Allows larger motion vessels (e.g. semisubs, FPSOs)
 - All risers need not be orthogonal to dominant NE swell direction

- Internal fluids
 - SLWR better suited than flexibles for sour service, high pressure and large OD

- Calcareous soil
 - Reduces interaction at TDZ with calcareous soil which has high vertical and horizontal stiffness
 - Hence reduced fatigue loading

Learn more at www.2hoffshore.com
Steel Lazy Wave Risers (SLWRs)

- Tapered stress joint or flex joint
- Buoyancy modules
- SCR pipe with strakes (as required)

Learn more at www.2hoffshore.com
SLWR Design Challenges

- Riser fatigue in the hang-off and TDZ
- Slugging induced fatigue
- VIV of buoyancy modules
- Motion induced vibration (MIV, sometimes called heave induced VIV) is more pronounced than SCRs
- Sagbend may touch seabed during hydrotest
- High flex joint rotations in extreme cyclones
- Installation of empty riser with buoyancy modules
- Stability/fatigue in wet parked condition
- Loss of buoyancy
- High pull in loads

Learn more at www.2hoffshore.com
Preliminary Configuration

- Sufficient length to avoid TDZ overstress
- Minimise height to minimise buoyancy & associated costs
- Avoid seabed contact with heaviest fluid & extreme near offset

Learn more at www.2hoffshore.com
SLWR Configuration Development

- Configuration is highly dependent on:
 - Internal fluids
 - Vessel motions

- Fatigue life improvement
 - Increased buoyancy
 - Increase in overall suspended length
 - Hang-off angle

- Typically, what is good for fatigue is bad for installation

- Configuration development requires iteration

Learn more at www.2hoffshore.com
High Arch Strength Response

- FPSO Feasible
- Better stress response than SCR
- Highest stresses distributed between hang-off, sag and hog bends, and TDZ
- High stress fluctuation at critical locations

Learn more at www.2hoffshore.com
Low Arch Strength Response

- Critical location at start of buoyancy
- High stress driven by:
 - Sag bend heave motion
 - Less damping
- Increased likelihood of local buckling
- Can be optimised by increasing arch height

Learn more at www.2hoffshore.com
Typical Wave Fatigue Response

- Critical locations
 - TDP
 - Hang-off point
- Better fatigue life than SCR
- Relatively low fatigue life occurs at hog and sag bends with high curvature fluctuations
- Fatigue life increased by longer suspended length - by increasing hang-off angle or buoyancy coverage.

Learn more at www.2hoffshore.com
Arch Height Effect on Fatigue

Fatigue Life (years)
- Low Arch = 670
- Mid Arch = 750
- High Arch = 1,500

Sag Bend Height: 2400 ft
Arch Bend Heights:
- Low Arch 2600 ft
- Mid Arch 3100 ft
- High Arch 3600 ft

Learn more at www.2hoffshore.com
Sagbend Effect on Fatigue

Fatigue Life (years)

- Low Sagbend = 2,700
- High Sagbend = 2,100

Learn more at www.2hoffshore.com
Lazy Wave Riser VIV

- SLWRs in the NWS are expected to be fully covered with VIV suppression due to the possibility of strong cyclonic currents.
- Buoyancy section is typically not fitted with suppression. Lock-in of buoyancy module and gaps can occur.
- Lazy wave riser VIV is still an active research topic. Previous studies include – Shell tests at MARINTEK (OTC 23672), CFD studies by Chevron (OMAE 24522).

CFD based flow visualization
(Constandinides and Zhang, OMAE-24522)

Learn more at www.2hoffshore.com
Lazy Wave Riser VIV

- Buoyancy modules and bare pipe modes compete
- Preference is to have buoyancy modules vibrate (low modes)
- Buoyancy module L:D ratio and module to gap length ratio critical in determining VIV response
- Bounding approach suggested while using empirical programs such as SHEAR7

Learn more at www.2hoffshore.com
SLWR Motion Induced Vibrations

- MIV of SLWRs can contribute significantly to fatigue, particularly in cyclonic seastates
- MIV is not yet well characterised
- Deepstar® SLWR test campaign (OMAE 54970) demonstrated MIV in the out of plane direction at up to 4 times applied frequency
- MIV can be modeled using a global model and VIV software and updated hydrodynamic coefficients based on tests/field data

Learn more at www.2hoffshore.com
SLWR MIV Modeling

Extract riser velocities at discrete timesteps

Relative “current” profiles for VIV assessment

Learn more at www.2hoffshore.com
Optimisation for Clearance

Configuration envelope due to fluid variation

Configuration envelope optimised to allow crossing without interference:

Learn more at www.2hoffshore.com
SLWR Installation

- Major challenge - high strain during installation of buoyancy modules
- Installation aids include clump weights, retrofit buoyancy modules
- Installation and wet-parked conditions should be assessed for strength and fatigue

Learn more at www.2hoffshore.com
SCR/SLWR Monitoring Programs

- While laboratory tests are a good indicator of riser behavior, they are not a substitute for real field behavior.
- A number of catenary risers have been monitored in the past 2 decades.
- The ongoing STREAM (STeel Riser Enhanced Analytics using Measurements) JIP is focused on leveraging field measurements to improve typical design standards.

STREAM JIP Datasets

<table>
<thead>
<tr>
<th>TLP SCR</th>
<th>TLP SCR</th>
<th>Mini-TLP SCR</th>
<th>Spar SCR</th>
<th>Spar SLWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 inch OD</td>
<td>8 inch OD</td>
<td>12 inch OD</td>
<td>9 inch OD</td>
<td>7 inch OD</td>
</tr>
<tr>
<td>3,000 ft WD</td>
<td>4,000 ft WD</td>
<td>3,000 ft WD</td>
<td>4,000 ft WD</td>
<td>5,000 ft WD</td>
</tr>
<tr>
<td>20% straked</td>
<td>40% faired</td>
<td>15% straked</td>
<td>Fully straked</td>
<td>50% straked</td>
</tr>
<tr>
<td>20% faired</td>
<td></td>
<td></td>
<td></td>
<td>30% faired</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Learnings from Monitoring (STREAM JIP)

- Measurements indicate wave response damps down the riser to a greater extent than predicted by current industry standard modelling methods.
- Fatigue near TDP is over-predicted by factor of ~3.
- Inline and higher harmonic VIV are infrequently observed but can cause significant fatigue.
- Motion induced vibrations occur during storm seastates.

3 more datasets to be assessed – including 1 SLWR with semi.
Conclusions

- Steel lazy wave risers are suitable for the NWS
- Field proven extension to SCRs
- Enables larger diameters and pressures than flexibles
- Better fatigue and strength response
- Calibration of analysis parameters by monitoring is reducing conservatism

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com
Learn more at www.2hoffshore.com