Platform Life Extension — Identifying Critical Wells
David Roberts

Offshore Well Intervention
October 2016
Platform Life Extension – Identifying Critical Wells

5th October 2016
D Roberts

Learn more at www.2hoffshore.com
Agenda

- Introduction – technology > design life
- Size of the challenge - cost
- Platform well build
- Corrosion mechanism – accelerators
- Criticality screening
- Remediation methods
- Summary
- Conclusion
Introduction

- 70% global production comes from mature assets
- Advances in technology have extended production lives of wells > design life
- Corrosion related loss of structural integrity and potential for loss of containment
- Abnormal movement, clashes, ruptured flowlines, casing failures

Learn more at www.2hoffshore.com
Size of the Challenge

Installed Operational Offshore Conductors - Middle East

Abu Dhabi (UAE)
Saudi Arabia
Qatar
Iran
Azerbaijan
Dubai (UAE)
Neutral Divided Zone
Turkmenistan
Kazakhstan
Others

Nos.

0 500 1000 1500

0-5 6-10 11-15 16-20 21-30 31-40 41-50 >50

Learn more at www.2hoffshore.com
Structural Failure - Cost Effect

- **Cost (£)**
 - 4M
 - 650K
 - 50K

- **Time**
 - Engineering assessments & scheduled repair
 - Loss of centralisation
 - Connector failure
 - Well collapse
 - Facilities shut-in, engineering assessments and emergency well intervention

Cost includes engineering assessment, design and installation of repair equipment, deferred production and rig time.

Learn more at www.2hoffshore.com
Platform Well Construction

Well built on the conductor – latched or may lift off when hot (Hybrid).

Well built on the surface casing, conductor acts as a marine protector only.

HYBRID – no lockdown? More complex!

Learn more at www.2hoffshore.com
Criticality Screening

Learn more at www.2hoffshore.com
4 Steps to be Considered

1. Calculate well “as-built” weight – Size of the initial forces

2. Measure remaining wall thickness – Quantity of steel carrying forces

3. Assess well criticality – re-model with reduced performance & added external & operational loads

4. Implement corrective method – Fix if required & re-model
Step 1. Well Load (Weight)

Option 1

Well Build Predictive Modelling

Reasonable well data, a load / displacement calibration point is useful.

Learn more at www.2hoffshore.com
Direct Measurement

Option 2
Direct In-Situ measurement ASTM E837

±3% accuracy

Learn more at www.2hoffshore.com
Health Check

- Do in-situ load and model match?
- Has the well maintained its as-built load and GAP?
- Are all the springs still working?
- If structural spring fails the rest will take its share whether they are capable or not!

Learn more at www.2hoffshore.com
STEP 2. Remaining Wall Thickness

- Pulsed Eddy Current (PEC) method – field proven
- Ability to read thickness of “good steel” through thick corrosion / marine product ~ 20mm
- Integrated camera
- Multiple historic surveys gives corrosion rate
- C-PEC measures simultaneously

![Graph showing PEC wall thickness measurements over time](attachment:graph.png)
Offshore Riser in Splash Zone

Colour-coded wall thickness graph

Jig with PEC probe

C-PEC tool with PCE can bypass access problems in D-annulus

Learn more at www.2hoffshore.com

<table>
<thead>
<tr>
<th>Vertical Position [mm]</th>
<th>Clock Position [hours]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>16.5</td>
</tr>
<tr>
<td>-100</td>
<td>16.8</td>
</tr>
<tr>
<td>-200</td>
<td>16.7</td>
</tr>
<tr>
<td>-300</td>
<td>16.5</td>
</tr>
<tr>
<td>-400</td>
<td>17.1</td>
</tr>
<tr>
<td>-500</td>
<td>16.9</td>
</tr>
<tr>
<td>-600</td>
<td>16.7</td>
</tr>
<tr>
<td>-700</td>
<td>16.1</td>
</tr>
<tr>
<td>-800</td>
<td>16.6</td>
</tr>
<tr>
<td>-900</td>
<td>16.9</td>
</tr>
<tr>
<td>-1000</td>
<td>16.5</td>
</tr>
<tr>
<td>-1100</td>
<td>16.1</td>
</tr>
<tr>
<td>-1200</td>
<td>14.9</td>
</tr>
<tr>
<td>-1300</td>
<td>13.9</td>
</tr>
<tr>
<td>-1400</td>
<td>14.4</td>
</tr>
<tr>
<td>-1500</td>
<td>15.3</td>
</tr>
<tr>
<td>-1600</td>
<td>16.5</td>
</tr>
<tr>
<td>-1700</td>
<td>15.3</td>
</tr>
<tr>
<td>-1800</td>
<td>16.4</td>
</tr>
<tr>
<td>-1900</td>
<td>16.4</td>
</tr>
<tr>
<td>-2000</td>
<td>16.7</td>
</tr>
<tr>
<td>-2100</td>
<td>16.8</td>
</tr>
<tr>
<td>-2200</td>
<td>16.8</td>
</tr>
<tr>
<td>-2300</td>
<td>16.6</td>
</tr>
<tr>
<td>-2400</td>
<td>15.6</td>
</tr>
<tr>
<td>-2500</td>
<td>15.2</td>
</tr>
<tr>
<td>-2600</td>
<td>15.7</td>
</tr>
<tr>
<td>-2700</td>
<td>16.4</td>
</tr>
<tr>
<td>-2800</td>
<td>16.8</td>
</tr>
<tr>
<td>-2900</td>
<td>16.8</td>
</tr>
<tr>
<td>-3000</td>
<td>17.1</td>
</tr>
</tbody>
</table>
STEP 3. Assess Well Criticality

- Casing supported
- Revisit well model
- Insert corroded section/s
- Review stress analysis

Learn more at www.2hoffshore.com
Account for the Well’s Slump

- Well finds a new equilibrium
- Significant load changes
- May still be within limits
- If slumped distance not known assume next string in is now structural.

Learn more at www.2hoffshore.com
External load sources

- Conductor supported wells
- Include wave & current loading
- Insert corroded section/s, define guides & clearance, soils
- Well loads from static applied as distributed axial load in dynamic global model.
Operational load sources

- Weight of surface equipment – full stack up.
- Thermal changes not to be underestimated! Any cold injections in particular

All future lifecycle operations considered through to abandonment

Well kill operation adding 100 Te!

<table>
<thead>
<tr>
<th>Load</th>
<th>Axial Load (tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30" Conductor</td>
</tr>
<tr>
<td>Install Wellhead - 30in Conductor Casing</td>
<td>-4.8652</td>
</tr>
<tr>
<td>Primary Cementing - 20in x ... Surface Casing</td>
<td>218.5975</td>
</tr>
<tr>
<td>Nipple-Up BOP - 20in x ... Surface Casing</td>
<td>178.2010</td>
</tr>
<tr>
<td>Primary Cementing - 14in x 13 3/8" Intermediate Casing</td>
<td>-47.4517</td>
</tr>
<tr>
<td>Nipple-Up BOP - 14in x 13 3/8" Intermediate Casing</td>
<td>-89.487</td>
</tr>
<tr>
<td>Primary Cementing - 10 3/4in x 10" Production Casing</td>
<td>-502.409</td>
</tr>
<tr>
<td>Primary Cementing - 8.312in x ... Production Liner</td>
<td>-619.266</td>
</tr>
<tr>
<td>Primary Cementing - 7in x 5 1/2" Production Tubing</td>
<td>-880.0</td>
</tr>
<tr>
<td>Nipple-down BOP - 7in x 5 1/2" Production Tubing</td>
<td>-813.5383</td>
</tr>
<tr>
<td>P.6 End Cold Kill Early - 7in x 5 1/2" Production Tubin</td>
<td>-913.7673</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Well Condition Known - Remediation Methods
STEP 4. Corrective/Preventative Methods

Low Severity

- Baseline PEC wall thickness & revisit at later date, corrosion problems not always obvious.

- Corrosion inhibition
 - Rapeseed oil top up (N.Sea)
 - Biocide
 - Coatings

- Measure & record GAP and Wellhead elevation for significant events.
STEP 4. Corrective/Preventative Methods

Medium Severity

- **Stabilisation**
 - Conductor guide reinstatement
 - Conductor & surface casing retro-fit centralisers
 - Increases fatigue life & reduces VME stress

Conductor guide installation - Claxton

Learn more at www.2hoffshore.com
STEP 4. Corrective/Preventative Methods

Medium Severity

- Load transfer using shims/clamp
 - Conductor integrity?
 - Soil integrity?
 - D-Annulus access preserved

- Grouting D-Annulus
 - Floating grout retainer for holed conductors
 - Access to D-Annulus lost
 - Corrosion inhibition over grouted interval
 - Hot or cold?
 - Restricting its movement not necessarily a good thing!

Learn more at www.2hoffshore.com
STEP 4. Corrective/Preventative Methods

Short term solutions

- Platform Supported
 - No conductor integrity required
 - Platform strength – limited number of wells
 - Ideal for abandonment
 - Ideal to support well for repair work

Learn more at www.2hoffshore.com
STEP 4. Corrective/Preventative Methods

- Reinforcing Conductors / Casings
 - Complex
 - Well supported / lifted during repair

- Replacement
 - Full well integrity restored
 - Very complex

High Severity

Learn more at www.2hoffshore.com
Summary

- Investigate your wells
- Identify and repair critical wells APPROPRIATELY & COST EFFECTIVELY.
- Prevent FURTHER CASULATIES
- Monitor

Learn more at www.2hoffshore.com
Conclusion

- The well model is invaluable to predict problems and catch the wells EARLY...$$$.

- Generic studies on analogous wells increases efficiency.

- Well movement measurements during intervention & operations are invaluable. Is it moving as it should?

- Accuracy of the analysis - isolates ONLY the wells requiring attention & defines the optimum solution.

- The wrong fix can cause other failures but if it’s not broken – don’t fix it!

Learn more at www.2hoffshore.com
Questions?
Thank you