Installation Considerations for Ultra Deep Water Risers

D. Walters, S. Hatton

Marine Construction
Feb. 2005
Installation Considerations for Ultra Deep Water Risers

Dave Walters, Steve Hatton

February 2004

Learn more at www.2hoffshore.com
AGENDA

• Steel Catenary Risers (SCR’s) Overview

• Design and Installation Considerations

• HPHT & Deepwater Applications

• Alternative Methods

• Summary

Learn more at www.2hoffshore.com
STEEL CATENARY RISER (SCR)

KEY POINTS:

• Perceived to be a proven (mature) solution

• Outwardly appear simple and cost effective

• Design critical, inflexible in accommodating design changes, highly iterative

• Technical and commercial Success is INSTALLATION driven

• BEST solution for existing contracting mechanisms

10% SUBSEA COST….90% THE PROBLEM

Learn more at www.2hoffshore.com
STEEL CATENARY RISER (SCR)

- Extensive use in GoM
- 6-24” diameter installed
- 1,000 – 7,000ft water depth
- All welded construction
- ‘Extension of flowline’
- Fatigue sensitive – weld quality
- Vessel interface options
 - Flex joint
 - Stress joint
- Payload impact on host facility
- Complex seabed layout
- **Installed by high spec vessels**
- Significant project specific issues

Learn more at www.2hoffshore.com
Applications – Current & Future

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installations</td>
<td>46</td>
<td>114 over next 5 years</td>
</tr>
<tr>
<td>Spars/TLP’s</td>
<td>85%</td>
<td>11%</td>
</tr>
<tr>
<td>FPSO’s</td>
<td>0%</td>
<td>41%</td>
</tr>
<tr>
<td>Semi</td>
<td>15%</td>
<td>48%</td>
</tr>
<tr>
<td>Export</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Production</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>West Africa</td>
<td></td>
<td>40%</td>
</tr>
</tbody>
</table>

This is a significant extension of ‘proven’ capability

Learn more at www.2hoffshore.com
SCR Design Considerations

- Water Depth
- Vessel motions
- Currents and VIV
- Coatings and thermal management
- Corrosion and material loss
- Field layout
- Impact on host structure (payload)
- Fatigue (confidence levels)
- HP/HT and sour service
- Pipe quality
- Welding and inspection
- Inspection

Learn more at www.2hoffshore.com
SCR Future Applications - Issues

- High Pressure, High Temperature and Deepwater leads to:
 - Thicker wall pipe (40mm limit)
 - Increases line pipe cost
 - Limited number of pipe manufacturers
 - Challenging offshore fabrication
 - Longer offshore installation times
 - Higher riser tensions during installation and service
 - Reduced flow area for production

BUT FITS WITH CONVENTION

Learn more at www.2hoffshore.com
SCR Weld Criticality

- SCRs are dynamically loaded structures
- Constructed by welding
- All welds contain defects
- All welds have stress concentration
- Defects grow and eventually propagate
- Riser failure is UNACCEPTABLE
- Engineering intensive to achieve confidence

Learn more at www.2hoffshore.com
SCR Installation Considerations

- Welded construction is the **default**
 - Large track record
 - High level of confidence
 - Industry preference to extrapolate shallow water technology
 - Contractor pre-investment in high spec installation vessels
 - No alternatives offered

- Installation strategy can be complex and yet is **critical**
 - Limited number of qualified contractors in busy market
 - Limited number of capable vessels
 - Many developments in remote locations (mob –demob)
 - Critical path activity – dependent upon weld qualification
 - Pre-installation an important commercial requirement

Learn more at www.2hoffshore.com
SCR Suitability?

- What are the true drivers?
- Is the SCR really the best option?
- Are other riser options better suited?
Deepwater Considerations

• Develop Efficient Riser Designs
 – Reduce Weight / Payload / Buoyancy needs
 – Improve performance and reduce criticality
 – Facilitate future maintenance and upgrades (eg. pumping)

• Offshore Construction
 – Faster Installation
 – Lower Cost Installation

• Improve schedule flexibility
 – Improve contract arrangements
 – Availability of installation vessels
 – Pre-installation capability

Learn more at www.2hoffshore.com
Free Standing Solutions

- Outwardly more complex
- Address deepwater issues
- Competitive installed cost
- Construction using T&C

Wellhead technology

NOT

Flowline technology

Learn more at www.2hoffshore.com
THREADING & COUPLED CONNECTIONS

- Non Welded
- High strength steel
- Proven metal seal
- Fast make-up
- Good fatigue
- Testing shows ‘Better than weld’
- Low cost

Learn more at www.2hoffshore.com
Threaded Construction Installation

- Option to use less expensive vessels
- Greater vessel availability
- MODU’s specifically designed for threaded pipe with large tension capacities
- Eliminates installation vessel mobilization
- Relaxes schedule constraints and allows pre-installation
- Facilitates future inspection, maintenance and upgrade

Learn more at www.2hoffshore.com
Proven Wellhead Technology

- Top Tensioned Risers

Learn more at www.2hoffshore.com
Weld vs Threaded Connections

- High strength steel 95-110 ksi
- 13% chrome steel (for CO₂ and H₂S)
- Example Comparison:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Welded X65</th>
<th>Threaded P110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Thickness</td>
<td>1.0</td>
<td>0.55</td>
</tr>
<tr>
<td>Top tension</td>
<td>1.0</td>
<td>0.58</td>
</tr>
<tr>
<td>Flow area</td>
<td>1.0</td>
<td>1.28</td>
</tr>
<tr>
<td>Max Riser Stress (100yr)</td>
<td>1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>Fatigue Life E- 1.25 vs B-3.0</td>
<td>1.0</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
PREFERRED RISER SYSTEM?

• Most suitable is heavily dependent upon:
 – Project schedule
 – Schedule / development flexibility requirements
 – **Installation contract strategy**

• Most suitable riser is one that:
 – Meets functional requirements
 – Reliable performance
 – Fits with field layout scenario
 – Installed at lowest cost / risk (cost exposure)

Learn more at www.2hoffshore.com
SUMMARY - SCR’s are:

- a cost effective riser solution for deepwater applications
- inherently complex with a multitude of interfaces
- not easy to accommodate changes – requires iterative design
- a riser solution that fits with existing contracting strategies
- heavily dependent upon success of welding operations and offshore installation capabilities
- response critical requiring monitoring for marginal designs

Learn more at www.2hoffshore.com
Summary

• Alternative risers and construction methods are available
• “Best” option is dictated by installation consideration and contract strategy
• Optimum to minimize project risk and maximize flexibility
• Ability to accommodate inevitable changes
 – Technically
 – Commercially
 – Logistically

“Desire a contract strategy to CAP the exit wound”

Learn more at www.2hoffshore.com