Steel Catenary Risers (SCRs) System Design and Experience

S. Hatton, P. An, T. Eyles

Euroforum
Jan. 2004
EUROFORUM
January 29th 2004

Steel Catenary Risers (SCR’S)
System Design and Experience

Steve Hatton, Dr Pei An, Tim Eyles

Learn more at www.2hoffshore.com
Presentation Objectives

- Present the opinion that the industry is being rather aggressive in the application of SCR technology based on a limited experience base.

- Highlight the concern that the ‘loop’ between analysis predictions and actual response is not being adequately closed leaving considerable scope for uncertainty and risk.

- Recommend a strategy to best mitigate this risk, improve confidence levels and avoid future failures.

Learn more at www.2hoffshore.com
Basis of Opinions

- Detail design of 3 deepwater SCR projects
- Formal analysis verification on 2 West African projects
- 100+ Studies at conceptual to FEED levels
- $5.0m JIP funding on SCR technology development
SCR Current Applications

- 46 SCRs currently installed to date
- 85% on Spars/TLP – Small motions
- 70% Export service – No H_2S or Slugging
- 96% Gulf of Mexico – Mild environment

- Longest service record is Shell Auger TLP (10 years) BUT SCR already replaced
- Only 2 risers known to have been instrumented – with varying success
- Results from back analysis shows poor ability to predict actual response

Learn more at www.2hoffshore.com
SCR Future Applications

• 114 SCRs planned in next 2-5 years
 • 41% to FPSO
 • 48% to Semi
 • 11% to Spars/TLP
 • 40% in West Africa
 • 60% production

• This is considered a step change in design complexity and risk

Learn more at www.2hoffshore.com
• SCR Criticality

• SCRs are dynamically loaded structures
• Constructed by welding
• All welds contain defects
• All welds have stress concentrations
• Defects grow and eventually propagate

• SCR fatigue failure is a matter of time
 – HOW MUCH TIME?
How much Time to Failure – Interrelated Design Uncertainties

- Load history (Deep currents)
- Riser structural response (VIV, TDP compression)
- Operational conditions (H₂S, slugging)
- Vessel dynamic response (1st and 2nd Order)
- Vessel ballast/loading cycles
- Modelling uncertainties (drag, strakes, TDP interaction, trenching)
- Fabrication quality (Actual defect sizes and properties)
- Material & weld performance (SN and Crack growth rate)

- Significant uncertainty on calculated fatigue life
- Is a factor of safety of 10 appropriate?
SCR Design Approach

- Ensure accurate and complete design basis
- Use a well developed analysis methodology and analytical tools
- Anticipate volume analysis to cover large number of load cases
- Interpret results cautiously to truly understand response
- Schedule for a large number of design iterations/changes
- Conduct ECA linking analysis to fabrication requirements
- Conduct weld qualification & fatigue testing ASAP

- Don’t make mistake of believing a ‘**SCR**’ is a ‘**Simple Catenary Riser**’
TDP Bending Moment Response under compression

Spiky TDP response caused by vessel motion induced compression

Learn more at www.2hoffshore.com
SCR Response Complexities – TDP Compression

MAXIMUM STRESS VS. TDP EFFECTIVE TENSION
6INCH PRODUCTION SCR - RANGE OF PERIODS

55 x 12hr simulations – 55 results!
0.5 – 1.35 yield

Learn more at www.2hoffshore.com
Implement Two Phase Approach to SCR Design

Phase 1

Predict riser response using ‘industry best practice’
Determine requirements for fabrication (ECA)
Implement appropriate fabrication inspection & QA

Phase 2

CLOSE THE LOOP
Monitor riser to determine actual riser response
Update/confirm fatigue life predictions
Update IMR plans

Learn more at www.2hoffshore.com
Typical SCR Fatigue Life Distribution

West of Africa FPSO in 1300m Water Depth - 12" OD SCR
First Order Fatigue Life

Fatigue Life (years)

Length from seabed anchor (m)

TDP

Vessel Hangoff

17m

Learn more at www.2hoffshore.com
Simplistic Monitoring Approach – Using Strain Gauges

1. Obtain TDP Stress Histories
2. Correct for local SCF
3. Rainflow count
4. Assume SN curve
5. Calculate damage
6. Predict remaining life

Learn more at www.2hoffshore.com
Plot of Possible Actual Life

- Highly Localised
- Peak missed by strain gauges

Learn more at www.2hoffshore.com
• Strain gauge density at least 1-2m to capture peak damage
• TDP position uncertain due to
 – Second order motions
 – Installation tolerances
 – Thermal expansion
 – Trenching
 – ‘Walking’ due to cyclic axial expansion
• High strain gauge density may be required over long TDP length
Monitoring using Strain Gauges

- Large numbers of strain gauges required – **impractical**
- Must be bonded to steel pipe - **complex coating interface**
- Bonding has finite life at high temps - **low long term reliability**
- Spot welding introduces crack initiation sites – **reduced fatigue life**
- Difficulty in sealing and protecting gauges– **low reliability**
- Difficulty in routing and protecting wires – **reliability and cost**
- Gauge calibration requirements - **cost**
- Not practical to gauge critical weld locations – **offshore installation**
- Stress correction required for local fatigue details – **uncertain**
- Wall thickness variation and drifting with time - (corrosion/bonding)

THEREFORE
- The most practical solution is to measure riser response at a few selected locations and determine peak response through calibrated analytical means

Learn more at www.2hoffshore.com
Recommended Monitoring Approach – GLOBAL Response

1. Monitor GLOBAL response
2. Compare with predictions
3. Identify discrepancies
4. Recalibrate analysis model
5. Rerun analysis & revise life predictions
6. Update IMR

Learn more at www.2hoffshore.com
How is Global Response Best Measured?

- **Rotations and Accelerations**
 - Non intrusive - Does not need contact with steel pipe
 - No corrosion problems
 - No thermal problems
 - No sealing problems
 - Reduced procurement complexity
 - Good reliability and can be replaced
 - Small size and low weight for ease of deployment
 - Signal not effected by local pipe wall corrosion/erosion
 - Does not drift and are not effected by pipe temperature
 - High sensitivity to capture actual response
 - Low component cost and overall system cost

Learn more at www.2hoffshore.com
3D Accelerometer, 3D Gyroscope and Inclinometer Logger

Optional Hardwired Connection

Learn more at www.2hoffshore.com
ROV Deployable Logger

- logger
- locking device
- riser pipe
- bracket
- Handle

Learn more at www.2hoffshore.com
Full Scale Riser Monitoring
- Allegheny

- SeaStar TLP
- 12” dia gas export SCR
- Instrumented by 2H August 1999
- 3300ft (1005m) GoM, top 1/6 straked
- ADCP to 650m

Learn more at www.2hoffshore.com
Logger Axes

X - Axial along pipe length
Y - Orthogonal to pipe in plan of catenary

Learn more at www.2hoffshore.com
Accelerations 10m above TDP

West of Africa FPSO in 1300m Water Depth - 12" OD SCR

Acceleration in Logger Local Axis - 10m above TDP

Hs=1.0m: 0.6m/s² Hs=1.9m: 0.8m/s²

Accelerations 10m above TDP

Hs=1m 0.03m/s² Hs=1.9m 0.06m/s²

Logger Resolution 0.001m/s²

Learn more at www.2hoffshore.com
Logger Sensitivity Confirmation

Sensor Output during applied Peak to Peak Accel = 0.011m/s², 4.6s Period

- **Peak to Peak Acceleration**: 0.011m/s² (0.03m/s² required)
- **Capability**: 0.003m/s² Peak to Peak
- **Noise Floor**: 0.00036m/s² RMS

Learn more at www.2hoffshore.com
Recommended Monitoring Approach

- Do not try and capture fatigue peaks – Global response
- Angles and rotations are recommended parameters to measure
- Carefully plan how data will be processed prior to implementation
- Ensure suitable logger design with respect to sensitivity, noise
- Optimise logger locations and logging schedules
- Appreciate complexity of signal processing
- Use processed data to calibrate analysis and recalculate fatigue life
- Short term monitoring (1-2 years) feasible / acceptable
- Stand alone loggers retrieved annually is acceptable for TDP fatigue
- Hardwired loggers at upper flex joint gives important real time data
- At least one riser on every development should be instrumented
Summary and Conclusion

• SCR technology is not as mature as many people would like to think and is generally more complex

• A number of key design uncertainties remain

• Application of SCR technology to higher motion vessels and for production applications presents increased risk

• THE ‘LOOP MUST BE CLOSED’ BY APPROPRIATE MONITORING TO ALLOW CALIBRATION OF ANALYSIS PREDICTIONS AND ASSUMPTIONS ON A PROJECT BASIS