TECHNICAL PAPER

Drilling Riser Fatigue & Wear in Deepwater Environments

H. Howells, S. Hatton

DEEPTEC
Jan. 2000
DRILLING RISER FATIGUE AND WEAR IN DEEPWATER ENVIRONMENTS

by
Dr Hugh Howells and Stephen Hatton

2H Offshore Engineering Ltd

Presented at IIR Deeptec 2000, Aberdeen, January 2000

Introduction

- VIV - effects and implications
- Wear - reasons for concern
- Inspection of deepwater drilling risers
- VIV and wear mitigation
- Alternative riser configurations
 - Slimline, FSDR, Liner,

Deepwater 1 Year Return Period Currents

VIV Effects

- High rates of fatigue damage
- Increased drag loading

6000ft Drilling Riser VIV Fatigue (1)

6000ft Drilling Riser VIV Fatigue (2)

Learn more at www.2hoffshore.com
6000ft Drilling Riser
VIV Drag Amplification

Implications of VIV

- High rates of fatigue damage
 - Increased top tension
 - Increased vessel and base loading
 - Suppression devices
- Increased drag loading
 - Increased curvature
 - More wear
 - More downtime

Deepwater Wear Considerations

- Larger mean angles
- Larger tensions
- Higher external pressures
 - 2667/4445psi at 6,000/10,000ft
- Higher internal pressures
 - 4393/7321psi 14ppg mud, 6,000/10,000ft
- Integrity of wall more important

Approach to Limit Wear

- Flex joint angle limits
 - 2 degrees mean, 4 degree max (API)
- Criteria based on historical performance
- Deepwater limits?
 - 0.5 to 1 degree mean used by some drilling contractors

Deepwater Inspection Issues

- Increased fatigue damage
- Increased wear
- More detailed inspection
- More frequent inspection

Learn more at www.2hoffshore.com
Riser Inspection

• Shallow water approach
 – total kip-days
 – 1 year usage approach

• Deep water
 – increased wear
 – increased fatigue

• Cost:
 – 6000ft, 80 No 75ft joints, $5,000/ft
 – at 75% usage = $3M/year, $8000/day

Inspection Difficulties

• Joint length - 75-90ft
• Joint weight - 60-70kips
• Difficult to handle - damage to buoyancy
• More remote - longer turn around
• More joints
• More expensive
• Need to rationalise
• Need to improve response

Riser in Rack

Riser Joint Rack (1)

Inspection Difficulties

• Joint length - 75-90ft
• Joint weight - 60-70kips
• Difficult to handle - damage to buoyancy
• More remote - longer turn around
• More joints
• More expensive
• Need to rationalise
• Need to improve response

VIV and Wear Mitigation

• Using existing equipment
 – Top tension
 – Joint rotation
 – Suppression devices
• Novel approaches
 – Slimline risers
 – Liners
 – Free-standing risers

Learn more at www.2hoffshore.com
VIV Reduction by Increasing Tension

- Vessel capacity may limit ability
- Limited benefit in very deep water
 - change in mode
 - change in frequency
 - partial reduction
- Increased load on wellhead system

VIV Fatigue Reduction by Joint Rotation

- Fatigue damage concentrated in lower joints - 2, 3, 4
- Rotating spreads high damage over a number of joints
- Joint storage may limit scope for rotation
- Use of different joints may limit rotation

VIV Fatigue at Riser Base

21 INCH Drilling Riser - 6000ft - 12 ppg Mud
F2 CLASS WELD AND SCF 1.3

VIV Fatigue at Riser Base

21 INCH Drilling Riser - 6000ft - 16.5 ppg Mud
F2 CLASS WELD AND SCF 1.3

VIV Fatigue Reduction by Joint Rotation

- Fatigue damage concentrated in lower joints - 2, 3, 4
- Rotating spreads high damage over a number of joints
- Joint storage may limit scope for rotation
- Use of different joints may limit rotation

Riser Joint Rack (2)
VIV Suppression

- Strakes
 - increased drag, rotation, wear
 - may be pre-installed but increased RT opening required
 - lower cost
- Fairings
 - reduced drag and less downtime
 - increased installation time
 - larger cost

VIV Suppression Systems

SCR Strakes

- Same arrangement as 21in riser
- 16in or 13-3/8in riser tube
- Omit larger casing sizes
- Reduced diameter gives:
 - reduced riser and mud weight
 - less buoyancy and riser top tension
 - improved circulation
- Requires new riser system

Slimline Risers

Lined Low Pressure Riser

- 9-5/8 or 13-3/8 inner casing
- High strength steel for low weight
- Different fluids in inner and outer annuli
- Hung from below slip-joint
- Packed-off above termination spool at bottom

Lined Riser Features

Learn more at www.2hoffshore.com
Liner Benefits

- Reduces mud pressure on 21in string
- Reduces tension in 21in string
- Reduces wall thickness
- Reduces buoyancy (diameter) and tension
- Reduces wear on 21in string
- Reduces mud volume and disconnect loss
- Improves hang-off response
- Reduces VIV through mass damping

Free-Standing Drilling Riser (FSDR)

FSDR Features

- Quick retrieval and re-connection of upper riser
- May disconnect for severe currents – reduced VIV
- More responsive to hurricane warnings
- Reduced implications of false alarms
- Reduced vessel tension
- Enables use of older vessels

Summary

- VIV fatigue and wear drive inspection of deepwater drilling risers
- Inspection can be costly
- Benefits of increased tension may be small
- VIV suppression adds to downtime
- Novel arrangements offer many benefits
- Experience will drive development

Learn more at www.2hoffshore.com