Riserless Coiled Tubing Subsea Pumping Well Interventions

J. Gaver – 2H
M. Holloway - Shell

Offshore Well Intervention
October 2015
Riser & Conductor Engineering

Houston | Rio de Janeiro | Aberdeen | London | Kuala Lumpur | Perth | Beijing

Learn more at www.2hoffshore.com
Riserless Coiled Tubing Subsea Pumping Well Interventions - Best Practices and Limitations

Offshore Well Intervention Conference
22nd October 2015

John Gaver (2H)
Mitch Holloway (Shell)

Learn more at www.2hoffshore.com
Agenda

- Introduction
- Configuration Description
- Operation and Design Issues
- Critical Sheave Locations
- Failure Mechanisms
- Strength Design Criteria
- Fatigue Design Criteria
- Fatigue Management Strategies
- Technology Gaps
- Conclusion

Learn more at www.2hoffshore.com
Introduction

- Subsea acid pumping used to stimulation well production.
- Riserless subsea pumping well intervention is a lower cost alternative to traditional methods.
- Coiled Tubing over-boarded and suspended using a sheave or an injector head. This presentation is specific to sheave deployed.
- As with all emerging technology, there are new challenges that must be solved.
- Goal of presentation is to bring awareness to “blind spots” when performing coiled tubing subsea pumping.

Learn more at www.2hoffshore.com
Traditional Well Intervention Comparison

Traditional Intervention Stackup vs. Riserless Intervention Stackup

Learn more at www.2hoffshore.com
A vessel of opportunity is often selected rather than a traditional intervention vessel.

Reeled coiled tubing is deployed over a sheave through the vessel’s moonpool or over the vessel’s side.

Coiled tubing extends from the vessel to an elevation of approximately 25-75 ft above the mud line.

Sheave geometry controls the displacement controlled strain/loading condition.

Learn more at www.2hoffshore.com
Seafloor Configuration Description

- A clump weight near the bottom of the coiled tubing limits the system’s dynamic response during installation and operations.

- Clump weight is required to straighten the coiled tubing as it passes over the sheave.

- Connected to the bottom of the coiled tubing is a flexible flying lead which connects to a subsea equipment package that provides access to the wellbore.

- The flexible flying lead is allowed to lie on the seabed between the coiled tubing and the subsea equipment package. Decouples the coiled tubing from the subsea assembly.

Learn more at www.2hoffshore.com
Operations and Design Issues

Learn more at www.2hoffshore.com
The geometry of the sheave dictates the strength and fatigue response of the system.

A smaller sheave radius will induce the following:
- Increased low cycle fatigue damage induced during reeling;
- Increased residual stresses in the suspended region of the coiled tubing;
- Increased strains in “on sheave” sections of the coiled tubing induced by vessel motion.

Sheave diameter should be at least 48 times larger than the OD of coiled tubing [NORSOK D-002]

Learn more at www.2hoffshore.com
Critical Sheave Locations

- A fatigue hotspot exists just below **Point B**.
- **Cannot** assume coiled tubing is tangent to the top and side of the sheave at Point A and Point B.
- If true, these points would instantly transition from finite to infinite curvature.
- Stiffness of the coiled tubing causes a “peel off” region.
- “Peel off” region shifts with vessel motions resulting in an area of low fatigue life.

Learn more at www.2hoffshore.com
Wall Thinning and Material Flow

- Putting coiled tubing through plastic strains during reeling causes wall thinning.
- Why is it an issue?
- Reduces the tensile capacity of the coiled tubing string and lead to failure
- Typically fibers in compression experience more wall thinning

Learn more at www.2hoffshore.com
Location of Fatigue Failures

- ~40% of fatigue induced cracks initiate along the fibers at the fatigue hotspot in tension. — Based on Study by Dr. Steve Tipton

- ~60% of fatigue induced cracks initiate along the fibers at the fatigue hotspot in compression.

- Majority of the fatigue induced cracking initiates on the inner surface. Failure sometimes referred to as pinholes.

- This means that visual inspections will typically not catch a fatigue induced crack until a rupture occurs. This behavior makes pre-operation analysis of coiled tubing extremely important.
Strength Criteria
Coiled Tubing Strength Criteria

- API-RP-5C7 (Coiled Tubulars) Section 5.2.6 is not valid because it does not consider the load history of the coiled tubing.

- Several strength checks that consider residual stress and displacement controlled loading conditions are presented.

- The industry consensus on the applicability of these methods is still ongoing under API-RP-17G2.

- Use and applicability of given strength criteria are project specific.

Learn more at www.2hoffshore.com
Compression Check

- The low ratio of flexural rigidity (EI) to length makes coiled tubing susceptible to Eulerian buckling.
- As such, the system must remain in tension for its entire length.
- The compression check, per API 17G, must consider dynamic effects in the system.

Learn more at www.2hoffshore.com
Strength Checks

- Current recommendation is to perform all 4.
 Learn more at www.2hoffshore.com
Method 1 – Displacement Controlled Loading Criterion

- API-STD-2RD Method 4 displacement controlled loading condition criteria.
- Assumes that the coiled tubing will never fail due to bending.
- Entire strength response governed by the local pressure gradient and the local effective tension.

\[F_D \geq \sqrt{\left(\frac{P_i - P_e}{P_b}\right)^2 + \left(\frac{T}{T_y}\right)^2} \]

Where,
1. \(p_i \) is the internal pressure;
2. \(p_e \) is the external pressure;
3. \(p_b \) is the allowable burst plastic pressure;
4. \(T_y \) is the allowable axial plastic capacity;
5. \(T \) is the maximum tension in coiled tubing;
6. \(F_D \) is 0.90 for service limit state.

Learn more at www.2hoffshore.com
Method 2 – DNV OS F101 Strain Criterion

- Strain limits provided by DNV as installation criteria
- Static and dynamic loading conditions

<table>
<thead>
<tr>
<th>Criterion</th>
<th>X70</th>
<th>X65</th>
<th>X60</th>
<th>X52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>0.27%</td>
<td>0.25%</td>
<td>0.23%</td>
<td>0.21%</td>
</tr>
<tr>
<td>Dynamic</td>
<td>0.33%</td>
<td>0.31%</td>
<td>0.29%</td>
<td>0.26%</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Method 3 – Pressure and Tension Limits

- “Coiled-Tubing Pressure and Tension Limits,” written by K.R. Newman and D. Schlumberger
- Plot the pressure differential against axial tension
- All pressure differential and axial tension combinations within the working limit curve are deemed fit-for-purpose.

Learn more at www.2hoffshore.com
Method 4 – Alternative Acceptance Criteria

- End user can prove the coil is fit for-purpose by providing:
 - Material and operational testing for the given system
 - An operational field history for similar interventions

Learn more at www.2hoffshore.com
Fatigue Criteria

Learn more at www.2hoffshore.com
Fatigue Damage Acceptance Design Criteria

- Coiled tubing undergoes low cycle and high cycle fatigue during its service life.
 - Low Cycle: Reeling Damage (<1000 cycles to failure)
 - High Cycle: Operational Damage (>1000 cycles to failure)

- **Problem:** Low and high cycle fatigue damage do not sum linearly.

- **Three Analysis Options:**
 - Linear Damage Rule
 - Non-Linear Damage Rules
 - Periodic Overload Curve
Miner’s Rule (Linear)

- Used to sum fatigue damage from same damage classification
 - High cycle + high cycle OR low cycle + low cycle

- \(D_T = \sum \frac{n_i}{N_i} \)
 - \(D_T \) is the total damage
 - \(n_i \) is number of cycles in a certain stress / strain histogram,
 - \(N_i \) is number of cycles to fail for that particular stress / strain amplitude in the stress / strain histogram.

- Miner’s rule is generally considered to be under conservative when assessing low and high cycle fatigue together

Learn more at www.2hoffshore.com
Non-Linear Damage Summation

- **Converts** fatigue damage calculation of a given classification to an equivalent fatigue damage of the other classification.
- Fit curve; material testing encouraged.
- Loading sequence is important with the power rule.
- Power rule can be used without the above information by assuming conservative p-value and conservative loading sequence.

Learn more at www.2hoffshore.com
Effective Strain-Life Curve with Linear Damage Rule (LDR)

- Used to create a composite fatigue curve that accounts for the effect of reeling cycles (overload cycles) on operational cycles.
- Typically used in the Automotive Industry.
- Developed by applying periodic overloads (reeling cycles) at certain maximum intervals so that all the applied high-cycle, low-strain (operational cycles) ranges are fully effective.
- When the specimen fails, an equivalent fatigue life for the low-strain cycles can then be obtained using LDR.

Learn more at www.2hoffshore.com
Constructing the Effective Strain-Life Curve with LDR

Period overload curve de-rates the fatigue performance.

Learn more at www.2hoffshore.com
Weld Type Fatigue Interpretation

Seam welds
- Critical to the manufacturing of the coiled tubing.
- Typically modeled as B2 in air S-N curve. Additional qualification recommended.

Bias welds
- Result of splicing sheets of steel during the manufacturing process.
- Helical in shape.
- Recommendation that an additional safety factor of three (3) is used.

Butt welds
- Circular welds
- Result of segments of the coiled tubing with defects being removed.
- Extremely fatigue critical.
- Not recommended.

Learn more at www.2hoffshore.com
Case Study

- Predicted fatigue life can be less than a month at hotspot.
Fatigue Management Strategies

- Strategies given in this section can help operators and service providers:
 1. Ensure the safety of personnel, environment and assets;
 2. Accurately track fatigue damage;
 3. Possibly extend the service life of the coiled tubing string;
 4. Eliminate accidental discharges;
 5. And, ultimately reduce costs.

Learn more at www.2hoffshore.com
FEA Based Fatigue Management

- FEA fatigue analysis performed for a range of expected environmental conditions.

- Results of the fatigue analysis used to generate expected fatigue damage rates for the range of environmental conditions.

- The theoretical fatigue damage rates generated from the FEA analysis can be in conjunction with seastate monitoring to determine a conservative accumulated fatigue damage value incurred in the coiled tubing in real time over the course of a campaign.

Learn more at www.2hoffshore.com
Over-Reeling

- Coiled tubing is deployed to a deeper than prescribed depth and is reeled in a specified length at specific time intervals.
- This serves to alleviate fatigue damage accumulation at a specific location that is within the “hot-spot” region and shifts that point down the length of the coiled tubing.
- It is critically important to permanently mark the fatigue “hot-spot” locations on the coiled tubing in order to prevent or limit reuse of that segment of tubing within the fatigue “hot-spot” in the future.
- The coiled tubing should not be marked in any way that could damage the pipe and form a stress concentration. This would greatly reduce the fatigue life of the coiled tubing at that location.

Learn more at www.2hoffshore.com
Technology Gaps

- Strength Criteria
- Fatigue Curve Refinement
 - High Cycle Fatigue Test Data
 - Industry Material Periodic Overload Curve
 - Sour Service Fatigue Data
- Post Service Testing

Learn more at www.2hoffshore.com
Conclusion

- The analysis methodologies and operational guidance proposed are merely a step in the right direction.

- However, there is still much that remains unknown.

- Expanded material testing is recommended to truly understand the behavior of the coiled tubing as it relates to this application.

- It is the goal of the presentation to promote awareness of the technology gaps with the hope that their value to the industry, as a whole, is realized.

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com