Challenges in Shallow Water Riser Design

G. Gardner – 2H

IMechE Offshore Engineering
December 2015
Challenges in Shallow Water Riser Design

7th December 2015
Gilles Gardner

Learn more at www.2hoffshore.com
Agenda

- Introduction
- Preliminary Project Survey
- Configuration Assessment Methodology
- Configuration Assessment
- Conclusions and Recommendations

Learn more at www.2hoffshore.com
Introduction

- Tubarão Martelo Field (Waikiki)
- Campos Basin - Brazil
- 95km from Rio de Janeiro
- Water Depth 110m

Learn more at www.2hoffshore.com
Introduction

- Challenge of Selecting Design Concept
- Fixed Platform - Lack of Infrastructure
- Water Depth too Shallow for Spar or TLP
- Floating Production Storage and Offloading
- Flexible Risers

Learn more at www.2hoffshore.com
Introduction

OSX-3 External Turret

- Production (6)
- Gas (8)
- Water Injection (1)
- Control Umbilical (8)

Learn more at www.2hoffshore.com
Introduction - Challenges

- Quantity of Risers Selected for Field
- Relatively Light Weight of Flexible Lines
- Geometrical Limitations Shallow Water Depth
- Dynamic Vessel Response Under Harsh Environmental Conditions

Learn more at www.2hoffshore.com
Preliminary FPSO Survey

FPSO Challis Venture
Australia
WD: 100 m
SALM
26 Risers
1989 - 2011

Learn more at www.2hoffshore.com
Preliminary FPSO Survey

Water Depth (m) vs Number of Risers

- **FPSO Alvheim**
 - Norway
 - WD: 120 m
 - Turret-Moored
 - 14 Risers with 3 MWAs
 - 2008 - Present

- **Etame**
 - Gabon
 - Spread Moored

- **Challis/Cassini**
 - AUS
 - SALM

- **Okono/Okooho**
 - NIG
 - Spread Moored

- **OSX-3**

Learn more at www.2hoffshore.com
Configuration Assessment Methodology

Preliminary Analysis

Acceptable?

Yes

Extreme Storm Analysis

Acceptable?

Yes

Interference Analysis

Acceptable?

Yes

End

No

No

No

Learn more at www.2hoffshore.com
Configuration Assessment
Methodology

Four Configurations Considered:

1. Free Hanging
2. Lazy Wave
3. Tethered Lazy Wave
4. Lazy S

Learn more at www.2hoffshore.com
Configuration Assessment

- **Preliminary Analysis**
 - No
 - Acceptable?
 - Yes
 - No
 - Extreme Storm Analysis
 - No
 - Acceptable?
 - Yes
 - No
 - Interference Analysis
 - No
 - Acceptable?
 - Yes
 - No
 - End

- **Quasi-static Analysis**:
 - 100 Year Return Period Current
 - Maximum Accidental Vessel Offset

- **Acceptance Criteria**:
 - Minimum Bend Radius of Risers
 - Maximum Hog-Bend Elevation
 - Minimum Sag-Bend Elevation

Learn more at www.2hoffshore.com
Configuration Assessment

- Dynamic Analysis:
 - Regular Wave Approach
 - Total of 256 Load Cases
 - 2 Internal Fluid Densities (min & max)
 - 2 Vessel Drafts (full & empty)
 - 8 Loading Directions
 - 8 Loading Combinations

Learning directions

- Quart 1
- Quart 2
- Quart 3
- Quart 4
- Transverse
- Near
- Far
- Near

End

Learn more at www.2hoffshore.com
Configuration Assessment

- Marine Growth
- Abnormal Condition:
 - 25° Vessel List
 - 1 Year Return Current and Wave Loadings
- Acceptance Criteria:
 - Same as Preliminary Analysis
 - Maximum Allowable Compression

Learn more at www.2hoffshore.com
Configuration Assessment

- Quasi-static and Dynamic Analysis:
 - 100 Year Return Period Current
 - 10 Year Return Period Wave
 - Maximum Accidental Vessel Offset

Learn more at www.2hoffshore.com
Configuration Assessment

• Clearance Assessed for all Risers
• Interference - Risers, Hull or Mooring Line
• Acceptance Criteria:
 • Minimum Clearance Shall be Larger Than the Sum of Their Outer Diameters

Learn more at www.2hoffshore.com
Configuration Assessment

• Free-hanging Catenary Configuration is NOT Feasible

• Lazy-wave Configuration NOT Feasible with Large Number of Risers

• Tethered Lazy-wave Configuration Selected as the Lateral Motions are Restrained at the Touch Down Point

• Lazy S Configuration Selected as Risers Lateral Motion Controlled Over Arches

Learn more at www.2hoffshore.com
Sensitivity Study Varying Several Parameters:
- Net Buoyancy
- Length of Buoyant Section
- Suspended Length
- Tether Positioning

Target Turret Departure Angle: 9°

- Light Risers → Large Departure Angles
- Heavy Risers → Small Departure Angles

Learn more at www.2hoffshore.com
Tethered Lazy-Wave Configuration Assessment

- Interference Between Adjacent Riser Pairs Conducted
- Close to 60% of the Riser Pairs Clash Due to Harsh Environmental Conditions

Learn more at www.2hoffshore.com
Lazy-S Configuration Assessment

Mid-Water Arch (MWA)

Tethers

Subsea Buoyancy Tank Assembly

Gravity Base

Learn more at www.2hoffshore.com
Lazy-S Configuration Assessment

Main advantages:

- More Room Between Mooring Lines and Adjacent Risers
- Risers Clamped to Arch in Gutters – Reduce Risk of Overbending

Learn more at www.2hoffshore.com
Lazy-S Configuration Assessment

Sensitivity Study Varying Several Parameters:
- MWA Position (Vertical and Arc Spacing)
- Minimum Bend Radius Along Sagbend for Selected Loading Conditions
- Ballast Modules Included Along Subsea Section for Lighter Pipe
Measures adopted to minimize interference issues:

- Different positions for adjacent MWAs
- Ballast modules at selected jumpers

Main Issues that Proved Challenging:

- Clashing Between Risers and Mooring Lines
- Clashing Between Risers, Tethers and Adjacent MWAs
- Ensuring Risers Have Enough Uplift from MWAs

Learn more at www.2hoffshore.com
Conclusions and Recommendations

Never Before Has Such a Large Number of Risers Been Used in Shallow Waters With a Turret Moored FPSO

<table>
<thead>
<tr>
<th>Configuration Type</th>
<th>Preliminary</th>
<th>Extreme Storm</th>
<th>Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Hanging Catenary</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Lazy-Wave</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Tethered Lazy-Wave</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Lazy-S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

The Lazy-S Configuration was Recommended for the Project

Learn more at www.2hoffshore.com
Acknowledgements

Many Thanks to:

Elton Ribeiro and Edson Labanca - OGX Petróleo

Roberto Alvim and Otavio Veras – 2H Offshore Brazil

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

2H offshore

www.2hoffshore.com

Learn more at www.2hoffshore.com
Challenges in Shallow Water Riser Design