Fatigue Challenges from Deepwater Drilling Operations

S. Natarajan, L. Shen Ching, L. Kian Giap

MODU Conference
Mar. 2014
Fatigue Challenges from Deepwater Drilling Operations

6th March 2014
Does Fatigue Occur?

Learn more at www.2hoffshore.com
Fatigue Failure Example

- High pressure housing to surface casing weld fatigue failure
- Facts
 - West of Shetland Region
 - 440m water depth
 - Run from a drill ship
 - Fatigue life – 29 days!
 - Observed angular motions at riser base = 2 degrees

Learn more at www.2hoffshore.com
Loading

- Drilling Mode (Exploration and Development)
 - Weight of BOP and LMRP
 - Loads due to vessel offset
 - Wave action and first order vessel motions
 - VIV response of riser (currents)
Loading (contd.)

- Completion/Intervention/Workover Mode (Development)
 - Loading from drilling riser with horizontal tree in place
 - Loading from WO/completion riser (like drilling riser) – applicable on the wellhead and conductor system

Learn more at www.2hoffshore.com
Typical Fatigue Locations

- Conductor to Wellhead Girth Weld: E-Class, SCF=1.3
- Conductor to Compression Ring Girth Welds: E-Class, SCF=1.3
- Extension Girth Weld: E-Class, SCF=1.5
- Conductor Coupling: B-Class, SCF=5.0
- Conductor to Coupling Weld: E-Class, SCF=1.3

LMRP / BOP: No fatigue check performed

Riser pipe: E-Class, SCF=1.3

Learn more at www.2hoffshore.com
First Order and VIV Fatigue

- Wave induced Fatigue
 - <100m - ~ 40yrs
 - 500m - ~ 200yrs
- VIV Fatigue
 - <100m - ~ 7yrs
 - 500m - ~ 5yrs

- Water Depth <500m: Both wave and VIV fatigue loading needs to be addressed
- Water Depth >500m: VIV fatigue source tends to dominate

Learn more at www.2hoffshore.com
Additional Challenges?

- Deeper wells especially HPHT reservoirs resulting in longer well durations
- Latest generation of drilling rigs have much heavier BOP/LMRP stacks
- Post Macondo requirement for a capping stack increasing the wellhead loading

Learn more at www.2hoffshore.com
BOP Resonance

BOP RESONANCE
Effect Of BOP Stack on Curvature at LP Housing Weld

Increasing BOP Height and Weight (addition of tree)

Curvature Factor = 2.6
Damage Factor \((2.6)^3 = 19\)

New vessels with large BOP’s can increase fatigue loading by more than 10 times
What Should the Fatigue Analysis Address?

- How long can we stay connected to the wellhead?
- If we expect to re-enter the well for intervention/workover, do we have sufficient remainder fatigue capacity?
- Can we accommodate extended drilling duration due to side-tracking of the well?
- Most importantly reduce any over-conservatism in the existing design approach and tools via detailed FEA and calibration

Learn more at www.2hoffshore.com
How to Optimise the System Design for Drilling Operations (1)

- Improve fatigue performance using VIV suppression devices

Strakes

Fins

Fairings

Learn more at www.2hoffshore.com
How to Optimise the System Design for Drilling Operations (2)

- Improve weld quality at fatigue critical locations in addition to pipe dimensional control

Learn more at www.2hoffshore.com
Implement Drilling Riser Integrity Management to address the following:

(Must Have’s)
- Riser joint usage recorded and rotated regularly
- Schedule and implement regular riser joint inspection
- Drilling riser and wellhead fatigue monitoring providing real time or deferred feedback for operational assistance

(Nice to Have’s)
- Implement drilling riser operation management system providing a real time feedback based on measured rig movement, environment and riser motions carefully manipulated by an onboard software

Learn more at www.2hoffshore.com
Conclusions

- Fatigue loading has been an increasing cause of concern due to:
 - Environment uncertainty
 - Increased well durations
 - Increased water depths
 - Use of horizontal trees and/or larger BOP’s with or without capping stack

- How to manage potential fatigue problems:
 - Engineer the riser stackup, wellhead and conductor system with appropriate fatigue details
 - Implement fatigue mitigation strategies including equipment procurement, fabrication and integrity management

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com