Establishing Operational Fatigue Limits for Intervention Risers

S. Sundararaman, M. Cerkovnik

Deepwater Intervention Forum
Aug. 2014
Establishing Operational Fatigue Limits for Intervention Risers

Shankar Sundararaman (2H Offshore Inc.)
Mark Cerkovnik (2H Offshore Inc.)
August 14, 2014

Learn more at www.2hoffshore.com
Agenda

• Background
• Riser Fatigue Life Assessment
• Monte Carlo Approach
• Case Study
• Summary & Conclusions
Motivation/Demand from Temporary Conditions

- **Operational conditions** e.g., completion/workover
- **Environmental conditions**: Wave/Current actuality vs. Metocean statistics
- Operations – Environment interaction
 - Operational disconnect in extreme weather
 - High day rates vs. risk of operation in extreme conditions

Learn more at www.2hoffshore.com
Standardized Approach/Guidance

- No “one size fits all” approach for intervention risers
- Code guidance for strength assessment:

<table>
<thead>
<tr>
<th>Duration</th>
<th>Return Period</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>>6 mo.</td>
<td>100yr</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>3 days – 6 mo.</td>
<td>10yr</td>
<td>10^{-1}</td>
</tr>
<tr>
<td><3 days</td>
<td>Most probable maximum</td>
<td></td>
</tr>
</tbody>
</table>

- **Design** for events with probability between 10^{-2} and 10^{-4} (accidental)

Learn more at www.2hoffshore.com
Riser Fatigue Life Assessment

- **Limited guidance** for fatigue assessment
 - Riser fatigue sustained during an **extreme event**?
 - **Duration** of extreme event?
- Fatigue Damage Estimation can be done using
 - Long-term fatigue seastates (**probability of failure**)
 - Long-term fatigue seastates (**factor of safety**)
- Typical probability of failure assessed: 10^{-4} to 10^{-6}/year
- Typical factor of safety: 10
- **Directional** data (Waves from North, East or Southwest)

Acceptable Failure Probabilities
(annual per riser vs safety class)

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Normal</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_f</td>
<td>$<10^{-3}$</td>
<td>$<10^{-4}$</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>FoS</td>
<td>2 to 3</td>
<td>6 to 7</td>
<td>10</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Riser Fatigue Life Assessment

• Challenges
 – Non-linear dynamic response
 – Excitation at a resonance
 – Heavy surface equipment
 – Aging infrastructure at the wellheads
 – Use of non-fatigue tolerant couplings and joints

• Solutions for Temporary Operations
 – Seasonal Metocean statistics
 – Monte Carlo simulations

Learn more at www.2hoffshore.com
Monte Carlo Simulation

- Tool for managing **uncertainty**
- Uses **random** number generation
- Can be used to weight for seasonal variations

Learn more at www.2hoffshore.com
Monte Carlo Simulation

Riser FEA Model (500 Nodes) => Seastates (100) => FEA Software => Fatigue Life [500 x 100] => Seastate Probability => Probability-Scaled Fatigue Life [500 x 100] => Location-Specific Total Fatigue Life [500x1] => Long-Term Fatigue Damage (Standard Approach)

- Identify Bin for each Fatigue Life
- Use Random Numbers to calculate Fatigue Life for trial seastates [500 x 72]
- Location-Specific Total Fatigue Life for Identified Period [500 x 1]
- Average/Statistical Norm of Location-Specific Measured Fatigue Life [500x1] => Compare Results For QA => Monte Carlo Approach

Repeat N=10,000 runs

Learn more at www.2hoffshore.com
Case Study

- Riser model applicable to short-term intervention operations

<table>
<thead>
<tr>
<th>Direction</th>
<th>Probability</th>
<th>Minimum Fatigue Life (Years)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Head</td>
<td>Quarter</td>
<td>Bow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100% Probability)</td>
<td>Aft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>35%</td>
<td>5.85</td>
<td>5.85</td>
<td>23.26</td>
<td>2.50E+10</td>
</tr>
<tr>
<td>Quarter Aft</td>
<td>35%</td>
<td>7.75</td>
<td>30.30</td>
<td>7.75</td>
<td>31.25</td>
</tr>
<tr>
<td>Beam</td>
<td>15%</td>
<td>9.01</td>
<td>1.48E+11</td>
<td>35.71</td>
<td>9.01</td>
</tr>
<tr>
<td>Quarter Bow</td>
<td>15%</td>
<td>6.76</td>
<td>27.03</td>
<td>7.41E+06</td>
<td>27.03</td>
</tr>
<tr>
<td>Total (Prob. Scaled)</td>
<td>100%</td>
<td>12.87</td>
<td>12.87</td>
<td>15.53</td>
<td>29.94</td>
</tr>
</tbody>
</table>

Important to account for directional variations

Learn more at www.2hoffshore.com
Case Study

Minimum Fatigue Life Along Riser

<table>
<thead>
<tr>
<th>Direction</th>
<th>Quarter Bow</th>
<th>Quarter Aft</th>
<th>Head</th>
<th>Beam</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability (%)</td>
<td>15</td>
<td>35</td>
<td>35</td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>Fatigue Life (Years)</td>
<td>5.85</td>
<td>7.75</td>
<td>9.01</td>
<td>6.76</td>
<td>12.87</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Case Study

Monte Carlo simulations for fatigue assessment and factor of safety/failure rate determination

Monte Carlo Runs Probability Scaled Damage Probability of Exceedance
No. Trials = 72

Fatigue Life Vs Probability Of Occurrence
Monte Carlo vs Probability-Based Long-Term Fatigue Life

90% Non-Exceedance level

97.7% or $\mu+2\sigma$ Non-Exceedance level

Notes
1 Trial = 1 hr. of seastate
10,000 runs = 10^{-4} failure probability

Learn more at www.2hoffshore.com
Summary & Conclusions

• A rational approach to determining fatigue damage based on Monte Carlo simulations for temporary operations is presented.

• Can be used to identify whether/not to proceed with operations.
 – For e.g., identify disconnect under extreme wave/current loads with minimal disruption.

• Approach requires minimal additional work.

• Account for extreme loads and seasonal/directional environment variations.

• Factors of safety and failure rates can be determined based on duration of operations.

Learn more at www.2hoffshore.com.
Guiding Codes & Standards

- API Spec 17G (DRAFT): Specification for Subsea Well Intervention Systems
- API RP 2RD (2006): Design of Risers for FPSs and TLPs
- API STD 2RD (2013): Dynamic Risers for FPSs
- DNV OS F201 (2010): Dynamic Risers
- DNV RP C203 (2011): Fatigue Design of Offshore Steel Structures
- DNV RP F204 (2010): Riser Fatigue

Learn more at www.2hoffshore.com
Questions