Subsea Wellhead and Conductor Fatigue

S. Powell

AADE Riser Meeting
Jan. 2014
Subsea Wellhead and Conductor Fatigue

29th January 2014

Simeon Powell, PE

Learn more at www.2hoffshore.com
Importance of Wellhead Fatigue

- Fatigue failure of high pressure wellhead housing
- Due to VIV
- West of Shetland Region
- 440 meter water depth
- Periodic cycle of 5012 seconds
- 2 degree angular motion at riser base
- **Failed in 29 days**
- One of the few well documented wellhead fatigue failures

Reference DOT paper 1983, C. Hopper, Britoil

Learn more at www.2hoffshore.com
Agenda

- Why is fatigue an increasing concern?
- Sources of fatigue damage
- Wellhead and conductor fatigue hotspots
- Predicting fatigue damage
- Optimize the system
- Fatigue management

Learn more at www.2hoffshore.com
Emerging Concerns

- Increased recovery times
 - Longer times on well

- Higher pressure (deeper) wells
 - Longer drilling durations

- Post-Macondo design requirements
 - Larger BOPs and capping stack requirements

- Use of newer vessels on older wells
 - Larger BOPs and LMRPs

Learn more at www.2hoffshore.com
Sources of Fatigue Damage

- Vessel motion due to waves (high frequency)
- Vortex Induced Vibration (VIV)

- Shallow water driven by:
 - Wave dynamics
 - Failed mooring line condition

- Deep water driven by:
 - Currents
 - Drift-off and drive-off

Learn more at www.2hoffshore.com
Riser VIV Impact On Wellhead

Learn more at www.2hoffshore.com
Wellhead VIV Variation with Location

WELLHEAD VIV FATIGUE LIVES WORLDWIDE
(Low Pressure Housing Weld)

Scatter due to different BOP heights and weights

** Calibrated software and safety factors - x3 improvement

- WoS - 2
- WoS - 3
- Atlantic Margin
- Norwegian Sea
- Asia Pacific
- North of Shetland
- West of Hebrides
- Malaysia
- Egypt
- West of Shetland**

Learn more at www.2hoffshore.com
Fatigue Sensitive Hardware

- Fatigue is an issue anywhere two components are joined together
 - Pipe to pipe Welds
 - Pipe to coupling welds
 - Connectors/couplings
 - High Pressure Housing (load shoulders, bolts)
 - Low Pressure Housing (load shoulders, bolts)

Learn more at www.2hoffshore.com
Coupling Fatigue Response
Wellhead Local Stresses and SCF’s
Non-rigid Lockdown Wellhead

LOCAL WELLHEAD MODEL
Conductor Weld Stress vs. Bending Moment

- Vertical Gap
- Resting on Landing Shoulder
- Lateral Gap
- Lateral Gap Closed

Learn more at www.2hoffshore.com
Fatigue Hot Spots – Rigid vs. Non-Rigid Lockdown

UNFACTORED FIRST ORDER FATIGUE LIVES
Rigid Lockdown vs Non Rigid Lockdown WH, Lower Bound Soil

Fatigue Life (Years)

Elevation Above Sea Bed (m)

Learn more at www.2hoffshore.com
Fatigue Hot Spots – Rigid vs. Non-Rigid Lockdown

UNFACTORED FIRST ORDER FATIGUE LIVES
Rigid Lockdown vs Non Rigid Lockdown WH, Lower Bound Soil
DnV E SCF 1.3

Learn more at www.2hoffshore.com
Effect of Vessel on Fatigue Life

MINIMUM UNFACTORED FATIGUE LIFE
C Class SCF 1.0, Weld 0.965m Below Top of Conductor
Drilling Mode, 0m Cement Shortfall

![Bar Chart](chart.png)

- **February - April**: Green bars
- **May - July**: Red bars
- **August - October**: Light blue bars
- **November - January**: Blue bars

- **Legend**:
 - Light blue bars: 4th Generation
 - Dark blue bars: 2nd Generation

Learn more at www.2hoffshore.com
Effect of Operation Mode

MINIMUM UNFACTORED FATIGUE LIFE
C Class SCF 1.0, Weld 0.965m Below Top of Conductor
1.5m Cement Shortfall

<table>
<thead>
<tr>
<th>Load Cases</th>
<th>Fatigue Life (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>February - April</td>
<td>34,000</td>
</tr>
<tr>
<td>May - July</td>
<td>15,000</td>
</tr>
<tr>
<td>August - October</td>
<td>24,000</td>
</tr>
<tr>
<td>November - January</td>
<td>36,000</td>
</tr>
</tbody>
</table>

Drilling Mode | Completion Mode
Keys to Accurate Fatigue Analysis

- Use integral riser, wellhead and conductor model
- Need comprehensive field data
 - Extreme and long term waves, current and soils
- Need clear definition of service requirements and duration
 - Exploration, keeper
 - Drilling, completion and workover durations

Learn more at www.2hoffshore.com
Wellhead and Conductor System Design/Analysis Challenges

- Uncertainty in soils and currents
 - Limited or no data for new regions
- Uncertainty in rig selection
 - Want to assess fitness-for-purpose before selection
 - Data may not be available
 - Future changes
- Lack of guidance on wellhead selection
 - Why choose one over another
- Variability in casing program
 - No two programs are the same
- Variability in soil properties
 - Even when data is defined we have to work between bounds

Learn more at www.2hoffshore.com
Optimize System Design and Operation

- Avoid Non-rigid lockdown wellheads
- Locate connector outside of region of maximum bending
- Limit duration on well when using large BOPs or stackups

- VIV suppression
- Fatigue details and weld quality
 - Avoid add-ons that do not consider fatigue

Learn more at www.2hoffshore.com
Fatigue Improvement – VIV Suppression Devices

- Strakes
- Fins
- Fairings
Fabrication Considerations

- Need to achieve high quality

- Welding to get good quality fatigue details with high grade steels is not simple

- Effort spent on qualifying and obtaining good quality fabrication is generally a good value
 - Pipe dimensional control, welding, coating
Fatigue Integrity Management

- Record riser joint usage and times on well
- Schedule and implement regular inspection
- Use extended monitoring where needed to measure riser and wellhead system fatigue
 - Calibrate analysis software assumptions – reduce conservatism
 - Verify design data

Learn more at www.2hoffshore.com
Fatigue Mitigation Developments

- Greater emphasis on appropriate specification of wellhead systems
- Braced wellheads
- Wellhead caissons
- Larger diameter (42in) conductors

Learn more at www.2hoffshore.com
Summary

- Fatigue was not a major design challenge in the past

- Vessels, risers and BOPs are changing to provide greater capability and comply with new regulations

- Wellhead designs are lagging behind

- Greater care is required when developing new wells or working on old wells with new equipment

- Monitoring can be used to measure system fatigue and calibrate analytical models

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com