Mitigating Drilling Riser and Conductor Fatigue

H. Howells

Annual Drillships Conference, IBC Asia
Oct. 2013
Mitigating Drilling Riser and Conductor Fatigue

Dr Hugh Howells
2H Offshore Engineering Limited

30th October 2013
IBC Energy, 2nd Annual Drillships, Seoul, Korea

Learn more at www.2hoffshore.com
Agenda

- Sources of fatigue
- Riser, wellhead and conductor fatigue hotspots
- Fatigue analysis
- What factors contribute to high fatigue
- Why drilling riser fatigue is an increasing concern
- Steps to minimise riser and wellhead system fatigue damage
- Drilling riser maintenance and fatigue management

Learn more at www.2hoffshore.com
Riser Loading

Learn more at www.2hoffshore.com
Wellhead System Loading

- Cyclic loading
- Riser tension
- Flex-joint
- LMRP
- BOP
- Tree
- HP and LP housing
- Housing extension weld
- 36” x 1.5” seam welded conductor pipe
- 36” x 1” seam welded conductor pipe
- -10.5m Weld-on connector
- Snag Load

Learn more at www.2hoffshore.com
Vortex Induced Vibration

Learn more at www.2hoffshore.com
Wave Induced Motion - Flowbase

Learn more at www.2hoffshore.com
Wave Induced Motion - BOP

Learn more at www.2hoffshore.com
Riser Fatigue Hotspots

- Pipe to pipe welds
 - One or two per joint

- Pipe to coupling welds

- Riser couplings
 - Transitions in section
 - Load shoulders
 - Bolts

- Along entire riser length
Wellhead System Fatigue Hotspots

- **Riser pipe**
 - E-Class, SCF=1.3

- **LMRP / BOP**
 - No fatigue check performed

- **Conductor to Wellhead Girth Weld**
 - E-Class, SCF=1.3

- **Conductor to Compression Ring Girth Welds**
 - E-Class, SCF=1.3
 - (Not Typical)

- **Extension Girth Weld**
 - E-Class, SCF=1.5

- **Conductor Coupling**
 - B-Class, SCF=5.0

- **Conductor to Coupling Weld**
 - E-Class, SCF=1.3

Learn more at www.2hoffshore.com
Conductor Fatigue

UNFACTORED FIRST ORDER FATIGUE LIVES ALONG CONDUCTOR
Rigid Lockdown WH

Fatigue Life (Years)

Elevation Above Sea Bed (m)

Learn more at www.2hoffshore.com
Wellhead Fatigue Hotspots

Unavoidable hotspot at LP housing weld

Connectors < 10m below mudline impair OVERALL fatigue resistance

Peak bending loads at 3-5m below mudline

Learn more at www.2hoffshore.com
VI V and First Order Fatigue

FATIGUE LIFE ALONG LENGTH OF DRILLING RISER
485.6ft Water Depth, Water Filled, Dual Annular BOP Model, E-Class Curve

Learn more at www.2hoffshore.com
VI V Fatigue Damage Build-Up

FATIGUE DAMAGE
150T Overpull At LFJ, High Surface Currents, Upper Bound Soil

Learn more at www.2hoffshore.com
Wellhead VIV Variation with Location

WELLHEAD VIV FATIGUE LIVES WORLDWIDE

(Low Pressure Housing Weld)

** Calibrated software and safety factors - x3 improvement

Environmental Harshness

Scatter due to different BOP heights and weights

Learn more at www.2hoffshore.com
• BOP stack natural frequency excitation has been observed in loop currents and under wave loading

• This can result in high accumulated fatigue damage in the wellhead and conductor system below the mudline

Learn more at www.2hoffshore.com
BOP Resonance

Effect Of BOP Stack on Curvature at LP Housing Weld

Curvature Factor = 2.6
Damage Factor \((2.6)^3 = 19\)

Increasing BOP Height and Weight (addition of tree)

New vessels with large BOP’s give more severe fatigue damage

Learn more at www.2hoffshore.com
Just how bad can it be?

- GoM BOP stack VIV at 0.16Hz (6.25 sec stack natural period),
- Total fatigue consumption at the first connector is 40% in 12 days
What We Don’t Want to Happen

- West of Shetland Region
- Discoverer534 DP drillship
- 440 meter water depth
- 42in air cans on riser
- Periodic cycle 5-12 sec
- 2 degree angular motion at riser base
- Failed in 29 days
- Reference DOT paper 1983, C. Hopper, Britoil

One (the only) well documented fatigue failure
Learn more at www.2hoffshore.com
Fatigue Drivers

- Deep water
 - High VIV fatigue damage
 - Currents greater than 1m/s (2 kts)
 - Generally low FOF damage

- Shallower water
 - Wave generally drives fatigue
 - Riser vibration frequencies may not correspond with current excitation (VIV) frequencies

- Large BOP and LMRP’s enable wellhead excitation at higher periods (lower frequencies)
 - Results in greater wave and VIV induced fatigue

Learn more at www.2hoffshore.com
Fatigue Damage Mitigation - Things to Consider/Avoid

- Extension joint length/connector location
- Casing swedges (20 to 13-3/8in)
- “Add-ons” that do not consider fatigue
- Non-rigid-lockdown wellheads
- Fatigue details/weld quality
- VIV suppression

Learn more at www.2hoffshore.com
Cement Top-Up System

Learn more at www.2hoffshore.com
Guidance System Below Wellhead

Learn more at www.2hoffshore.com
Anti-Rotation Fins

Learn more at www.2hoffshore.com
Non-Rigid Lockdown Wellhead

Vertical Gap

Resting on Landing Shoulder

Lateral Gap

Lateral Gap Closed

Learn more at www.2hoffshore.com
Non-Rigid Lockdown Wellhead - Conductor and Casing Stresses

Maximum Stress in Casing, Conductor & Wellhead
0.0m Cement Height

Learn more at www.2hoffshore.com
Fatigue Improvement - VI V Suppression Devices

Learn more at www.2hoffshore.com
Strakes - Below Choke and Kill Lines

Learn more at www.2hoffshore.com
Fins – (Langhorst)

Learn more at www.2hoffshore.com
Riser Fabrication Considerations

- Need to achieve high quality
- Welding to get good quality fatigue details with high grade steels is not simple
- How does C-class quality need to be proved?
- Effort spent on qualifying and obtaining good quality fabrication is generally good value
 - Pipe dimensional control, welding, coating

Learn more at www.2hoffshore.com
Fatigue Integrity Management

- Record riser joint usage and times on well
- Schedule and implement regular joint inspection
 - Typical - every 5 years in service
 - Brazil - every 2 years offshore
- Inspection
 - Limited ability to inspect fitted riser joints
 - Strip down of auxiliary lines and buoyancy needed
 - Inspection of fatigue hotspots needs good access requiring strip down of joints
- Use extended monitoring where needed to measure riser and wellhead system fatigue
 - Calibrate analysis software and assumptions – reduce conservatism
 - Verify design data – soils

Learn more at www.2hoffshore.com
Example Wellhead Monitoring

- 3 axis accelerometer
- Dual axis angular rate
- Loggers located on
 - BOP
 - Wellhead
 - Conductor
 - Template
- Magnetic holders
- ROV Installed

Learn more at www.2hoffshore.com
Stress and Motion Monitoring - Steps

- Monitoring system design
- Offshore installation
- Signal processing of measured data

Learn more at www.2hoffshore.com
Ways to Manage Fatigue - Monitoring

- Software and Model Calibration

Learn more at www.2hoffshore.com
VI V Fatigue Analysis Calibration
Future Current Concerns

- Increased recovery targets
 - Longer times on the well

- Higher pressure (deeper) wells
 - Longer drilling durations

- Post-Macondo design requirements
 - Larger BOP’s, capping stacks

- Use of newer vessels on older wells

Learn more at www.2hoffshore.com
Developments

- Greater emphasis on fatigue specification of wellhead systems
- Longer wellhead extension joints (18m)
- Braced wellheads
- Wellhead caissons
- Larger diameter (42in) conductors

Learn more at www.2hoffshore.com
Summary

- Fatigue wasn’t a major design challenge

- Vessels, risers and BOP’s are changing to provide greater capability and operating conditions are more diverse

- The wellheads are lagging behind

- Greater care is required when developing new wells or working on old wells (with new equipment) to ensure fatigue fitness-for-purpose

Learn more at www.2hoffshore.com
Thank you for your time.

Questions......

Further information:

2H Offshore Engineering
www.2hoffshore.com
+44 1483 774900

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com