Freestanding Risers for Deepwater FPSO

K. Li

FPSO Vessel Conference
Mar. 2012
Freestanding Risers for Deepwater FPSO

Ki Li
Senior Engineer
2H Offshore Engineering Ltd.

7th - 8th March 2012

Learn more at www.2hoffshore.com
Agenda

- 2H overview
- Challenges of Deepwater Operations
- Freestanding Riser Overview
- Riser Configurations and Component Design
- Case Study
- Alternatives

Learn more at www.2hoffshore.com
About 2H Offshore
Riser & Conductor Engineering

- Founded in 1993
- 180 highly qualified engineers
- Global standardised procedures for seamless operation
- Extensive experience in all riser types
- Practical understanding of hardware and installation
- Leaders in marine structure dynamics
- A technology driven company
- Part of the ACTEON group

Learn more at www.2hoffshore.com
Services

- Concept Design & FEED
- Detailed Engineering
- Procurement management
- Fabrication & Installation Support
- Integrity Management & Monitoring

Learn more at www.2hoffshore.com
An ACTEON company

ACTEON
LINKING SUBSEA SERVICES

Foundations and moorings
Risers, conductors and flowlines
Marine electronics and instrumentation
Oilfield/Subsea Services

2000 people worldwide | 17 operating companies | 2011: 380m turnover / £75m EBITDA

Learn more at www.2hoffshore.com
Deepwater Riser Design Challenges

- Long unsupported lengths
- High pressures
- Design life of 20-30 years
- Environmental loading
 - Current
 - Wave
- FPSO
 - Vessel motions
 - Vessel offsets
 - Payload limitations
 - High riser tension
- High extreme stresses
- High fatigue damage rates

Learn more at www.2hoffshore.com
Steel Catenary Riser (SCR)

- 6-30” diameter
- 1,000 – 10,000ft water
- Sensitive to vessel and environment
 - Extreme loads
 - Fatigue motions
 - Vessel-induced motions (VIM)
 - Vortex-induced vibration (VIV)
- Payload impact on host facility
- Complex vessel interface
 - Flex joint
 - Stress joint
- Touch Down Point (TDP)
 - Fatigue
 - Compression / Buckling
 - Interaction with soil

Learn more at www.2hoffshore.com
Free Standing Riser Configuration

Learn more at www.2hoffshore.com
Single Line and Bundle FSHRs

SINGLE LINE (SLOR / COR)
Kiz A & P52 Kiz B

BUNDLES (Internal) (External)
Girassol Block 18

Learn more at www.2hoffshore.com
BP Block 18 Riser Bundle

Learn more at www.2hoffshore.com
Buoyancy Tank

- Maintain riser verticality
- Steel plate structure
- Flat or hemispherical ends
- Pressure balanced design
- Water / nitrogen filled
- Compartmentalised

- Design up to:
 - 40m tall
 - 6m diameter
 - ~700Te upthrust

- Limited by:
 - Fabrication site
 - Handling / Installation restrictions

Learn more at www.2hoffshore.com
Upper Riser Assembly (URA)

- Tubular frame structure

- Loading interface between:
 - Top of riser pipe
 - Buoyancy tank
 - Flexible jumper

- May require:
 - Articulation connection
 - Flexible jumper pull-in
 - Intervention entry point

- Design up to:
 - 25m tall
 - 60Te

Learn more at www.2hoffshore.com
Upper Assembly - Alternatives

Learn more at www.2hoffshore.com
Flexible Risers

- Compliant response
- Not fatigue sensitive
- Installation friendly
- Limitations
 - Water depth
 - Pressure
 - Diameter
 - Temperature
- Expensive
- Reliability?
- Availability?

Learn more at www.2hoffshore.com
Base Assembly

- Rigid Base Jumper
- Taper Joint
- Flex Joint

Learn more at www.2hoffshore.com
Lower Riser Assembly (LRA)

- Tubular frame structure

- Loading interface between:
 - Bottom of riser pipe
 - Foundation
 - Rigid base jumper

- May require:
 - Articulation connection
 - Stress joint
 - Riser base gas lift

- Design up to:
 - 5m – 20m tall
 - 10 – 30Te

Learn more at www.2hoffshore.com
Freestanding Riser Evaluation

Advantages

- Decoupled from vessel motions
- Not sensitive to environmental loading
- Excellent fatigue performance
- Low vessel payload
- Vessel disconnect capability
- Installation flexibility
 - Vertical pipe handling
 - J lay, reel lay, threaded
 - Tow out
- Flow assurance flexibility
 - Large insulation thicknesses
 - Single pipe or Pipe-in-Pipe
- Local content
 - Piles
 - Buoyancy Can
 - Rigid jumpers
- Opportunity for design standardisation

Learn more at www.2hoffshore.com
Freestanding Riser Evaluation

Disadvantages

- High Capital Costs (CAPEX) compared to SCR
- Mechanical complexity
 - Design phase
 - Procurement phase
- Large spatial requirement
- Clearance or clashing issues
- Increased design complexity
- Installation challenges
 - Large components
 - Overall lift weight/height

Learn more at www.2hoffshore.com
<table>
<thead>
<tr>
<th>Type</th>
<th>Field</th>
<th>Status</th>
<th>Owner/ Field Operator</th>
<th>Yr. Installed</th>
<th>Region</th>
<th>Water Depth (ft)</th>
<th>Water Depth (m)</th>
<th>Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle</td>
<td>Green Canyon 29/</td>
<td>De-commissioned</td>
<td>Placid Oil Company/</td>
<td>1988/ 1994</td>
<td>GoM</td>
<td>1,529/2,096</td>
<td>466/639</td>
<td>Semi-Sub</td>
</tr>
<tr>
<td></td>
<td>Garden Banks 388</td>
<td></td>
<td>Ensearch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Line</td>
<td>Girassol</td>
<td>Operating</td>
<td>Total Elf</td>
<td>2001</td>
<td>Angola</td>
<td>4,430</td>
<td>1,350</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>Rosa</td>
<td>Operating</td>
<td>Total Elf</td>
<td>2007</td>
<td>Angola</td>
<td>4,430</td>
<td>1,350</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>BP Greater Plutonio</td>
<td>Operating</td>
<td>BP</td>
<td>2007</td>
<td>Angola</td>
<td>4,300</td>
<td>1,311</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>Kizomba A/ B</td>
<td>Operating</td>
<td>Exxon</td>
<td>2003/2005</td>
<td>Angola</td>
<td>3,330 to 4,200</td>
<td>1,006 to 1,280</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>*Block 31 NE</td>
<td>Fabrication</td>
<td>BP</td>
<td>2010</td>
<td>Angola</td>
<td>6,890</td>
<td>2,100</td>
<td>Turret Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>Roncador P-52</td>
<td>Operating</td>
<td>Petrobras</td>
<td>2007</td>
<td>Campos Basin</td>
<td>5,906</td>
<td>1,800</td>
<td>Semi-Sub FPU</td>
</tr>
<tr>
<td></td>
<td>*Cascade/ Chinook</td>
<td>Detailed</td>
<td>Petrobras</td>
<td>2011</td>
<td>GoM</td>
<td>8,531</td>
<td>2,600</td>
<td>Turret Moored FPSO</td>
</tr>
</tbody>
</table>

*To be installed

Learn more at www.2hoffshore.com
- Block 31, offshore Angola
- Putao, Satunro, Venus and Marte fields
- 1800m to 2100m (5900ft to 6890ft) water depth
- 9 Single Leg Hybrid Risers (SLHRs) connected to an externally mounted turret moored FPSO
- Deepest SLHR in WoA
- J-lay installation using Balder

Learn more at www.2hoffshore.com
### Service	PSVM
Production	1 x 10in Insulated Clad CS
2 x 12in Insulated Clad CS	
Gas Lift	1 x 8in Insulated Nominal CA
Water Injection	1 x 14in Non-insulated Polyethylene Lined
Gas Injection	1 x 10in Non-insulated Nominal CA
Service	1 x 10in Non-insulated Nominal CA
2 x 12in Non-insulated Nominal CA	
Dynamic Umbilical	4 x Main Control Umbilical
1 x Gas Lift Control Umbilical	
1 x Spare Main Control Umbilical	
- Project started in 2005
- 2H is responsible for...
 - Detailed component structural design
 - Detailed global analysis
 - Installation analysis
 - Procurement management

Learn more at www.2hoffshore.com
PSVM - System Overview

- Buoyancy Tank
- Upper Riser Assembly (URA)
- Upper Rigid Riser Pipe
- Lower Rigid Riser Pipe
- Lower Riser Assembly (LRA)
- Base Foundation
- Crossover Joint
- LRA Frame
- Piping
- Lower Flexible Joint
- Ballast Box
- Upper Flexible Joint
- Upper Riser Assembly (URA)
- Driven Pile
- URA Frame
- Winch Support Frame
- URA Piping
- Crossover Joint

Learn more at www.2hoffshore.com
PSVM - Driven Pile

- Driven pile self-penetrates into soil
- Hydraulic hammer drives the pile to required depth
- Pile length depends on soil conditions

Learn more at www.2hoffshore.com
PSVM – Ballast Module

- Mudmat (12m x 12m) provides resistance from sinking into the soil
- Ballast blocks (layers of steel plates) provides additional weight
- Total submerged weight of foundation must account for the maximum vertical loads at riser base
- Dry weight of ballast module can be up to ~300Te
PSVM - Foundation & Lower Assembly

Learn more at www.2hoffshore.com
PSVM - Upper Assembly

- Trussed frame size is 3m x 1.5m, 22.4m long
- Hollow parts must withstand hydrostatic collapse up to 250m depth
- Upper crossover joint
- Flexible joint

Learn more at www.2hoffshore.com
PSVM – Buoyancy Tank

- 5.5 m diameter
- Up to 19 compartments, 2m high each
- Max 50 tons up thrust per compartment
- Placed at 150m below sea surface

Learn more at www.2hoffshore.com
PSVM - Riser Tower Installed
Alternatives – Group SLORs

- Grouped arrangement
- Reduced cost - top assembly optimisation
- Ease of pre-installation
- Ease of field layout and pipe routing

Learn more at www.2hoffshore.com
Alternatives - Buoyancy Supported Risers

- Concept developed in the 90's by DeepStar for WD of 1000m
- Being developed for Guara and Lula pre-salt fields

Learn more at www.2hoffshore.com
FPSO Interfaces

- Key interfaces
 - Flexible end terminations and bend restrictors

- Key parameters affecting design
 - Turret vs spread moored
 - Position of riser hangoff
 - Space for riser end terminations
 - Maximum hang off weight
 - Vessel motions
 - Heading analysis
 - Mooring analysis

- Interface mechanism with FPSO contractor needs establishing early on!

Learn more at www.2hoffshore.com
Thank you for your time.

Questions?

Further information:

2H Offshore Engineering Limited
www.2hoffshore.com
+44 1483 774900

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com