HPHT - Single vs Dual Barrier
High Pressure Drilling Risers

T. Eyles

Subsea Communities - HPHT
Mar. 2011
Single / Dual Barrier
HP Drilling Risers

Acteon HPHT Subsea Community Breakfast Meeting

23rd March 2011

Tim Eyles
Director
2H Offshore Engineering
tim.eyles@2hoffshore.com / +44 1483 774908

Learn more at www.2hoffshore.com
Agenda

- Introduction
- Drilling Riser Configurations
- Deepwater TLP Drilling Risers
- Jack-up Drilling Risers
- Conclusions
- References and Further Reading

Learn more at www.2hoffshore.com
Why are some deep water HP drilling risers dual barrier?

What is current industry best practise?

Is a dual barrier system lower risk than a single barrier?

Why are most jack-up drilled tie-back wells drilled with a single barrier HP riser?

Learn more at www.2hoffshore.com
Drilling Riser Configurations

- **Shallow water – Jack-up**
 - Surface wellhead (Platform)
 - Surface BOP
 - Conductor/casing strings continued
 - No dedicated drilling riser
 - **Subsea wellhead (Tieback)**
 - Surface BOP + High pressure drilling riser
 - Avoid use of floating drilling unit

- **Deep water**
 - **Surface wellhead (Spar/TLP)**
 - Surface BOP + High pressure drilling riser
 - **Subsea wellhead (Tieback - Floating Drilling Unit)**
 - Subsea BOP + Low pressure drilling riser
 - Surface BOP + High pressure drilling riser

Learn more at www.2hoffshore.com
Drilling Riser Configurations

- Conventional shallow water drilling from Jack-up
- Conventional Subsea Drilling
- Surface BOP Drilling
- Surface BOP Drilling with ESG

Learn more at www.2hoffshore.com
High Pressure Drilling Risers
Existing Barrier Philosophies

Jack-up Unit
Tieback wells

Floating Drilling Unit
e.g.
Total Donggalla (13-3/8”)
Ophia/Shell (13-3/8”)

Spars/TLPs
e.g.
Dominion Devils Tower
Statoil Snorre

Spars/TLPs
e.g.
Shell Mars
BP Horn Mountain
Chevron Bigfoot

Single

Dual

Learn more at www.2hoffshore.com
Deepwater TLP Drilling Risers
Primary drivers for dual barrier

- Riser mud pressure significant contribution
 - Riser mud loss could compromise well control
- Excessive weight with a single barrier riser
 - Tensioner limitations
- Excessive wall thickness with a single barrier
 - Pipe availability
 - Weld quality
- Local legislation
- Seen as “best practise”

Shell Mars TLP

Learn more at www.2hoffshore.com
Deepwater TLP Drilling Risers Design Selection Process

- CAPEX – CAPital EXpenditure
- OPEX – Operational EXpenditure
- RISKEEX – RISK EXpenditure
- RAMEX – Reliability-Availability-Maintainability EXpenditure
- Profit = Max(Revenue-CAPEX-OPEX-RISKEEX-RAMEX)

Ref: Deepwater Development Lifecycle Costs for Subsea Systems JIP (1999)

Learn more at www.2hoffshore.com
Deepwater TLP Drilling Risers
Dual Barrier Pros & Cons

<table>
<thead>
<tr>
<th>Pros</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner string failure may not result in loss of well control</td>
<td>Lower RISKEX</td>
</tr>
<tr>
<td>Can monitor annulus pressure for leaks (small volume)</td>
<td>Lower RISKEX</td>
</tr>
<tr>
<td>Reduced wall thickness (esp. if diff. pressure ratings)</td>
<td>Lower CAPEX</td>
</tr>
<tr>
<td>Less demanding weld/material criteria</td>
<td>Lower CAPEX</td>
</tr>
<tr>
<td>Reduced system weight (esp. if diff. pressure ratings)</td>
<td>Lower CAPEX</td>
</tr>
<tr>
<td>Can continue drilling operations if small annulus pressure</td>
<td>Lower RAMEX</td>
</tr>
<tr>
<td>Use inner string as casing on next well to improve wear management</td>
<td>Lower RISKEX</td>
</tr>
<tr>
<td>Easier mud control (smaller volume)</td>
<td>Lower OPEX</td>
</tr>
<tr>
<td>Better cuttings management</td>
<td>Lower OPEX</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Deepwater TLP Drilling Risers Dual Barrier Pros & Cons

<table>
<thead>
<tr>
<th>Cons</th>
<th>Cost Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased riser hardware</td>
<td>Increased CAPEX</td>
</tr>
<tr>
<td>Increased riser running time</td>
<td>Increased OPEX</td>
</tr>
<tr>
<td>Increased riser weight (esp. if matched pressure ratings)</td>
<td>Increased CAPEX</td>
</tr>
<tr>
<td>Reduced flexibility for optimised casing hanger and programme</td>
<td>Increased OPEX</td>
</tr>
<tr>
<td>Limit on maximum number of casings</td>
<td>Increased OPEX</td>
</tr>
<tr>
<td>Increased number of components (may have common failure mode)</td>
<td>Increased RISKEX</td>
</tr>
<tr>
<td>Requires a good metal-to-metal seal at seabed</td>
<td>Increased RISKEX</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Deepwater TLP Drilling Risers
Selection Process

- Final selection should depend on full development lifecycle
 - CAPEX
 - OPEX
 - RISKEX
 - RAMEX
- Different operators will have different expenditure profiles
- Outcome location, operator and market dependent
Jack-up HP Drilling Risers
Design Challenges

- Increasing pressure, temperature, water depth, harsher environment
- Demanding fluid compositions
- Reduced desirable risk profile
- Increasing CAPEX
- Increased wall thickness & riser weight
- High tensioner utilisations
- Rig modifications
- Susceptibility to fatigue
 - Wave driven
 - Vortex-induced-vibration
- Increased riser wellhead loading/utilisation
- Increased vessel motion

Learn more at www.2hoffshore.com
Jack-up HP Drilling Risers Selection Process

- Consider project
 - CAPEX
 - OPEX
 - RISKEX
 - RAMEX

Learn more at www.2hoffshore.com
Jack-up HP Drilling Risers
Single Barrier System Considerations

- Reducing RI SKEEX
 - Adopt high performance connectors
 - Proven fatigue resistance
 - Proven make-and-break (and OPEX)
 - Proven sealing
 - Ensure appropriate materials and welding
 - Simplify design
 - Reduce number of components
 - Design for wear and corrosion
 - Appropriate base material specification
 - Adequate corrosion allowances with emphasis on splash zone
 - Adequate corrosion barriers on riser OD such as coatings and anodes
 - Ensure quality offshore installation
 - Consider riser monitoring
 - Consider seabed safety device

Learn more at www.2hoffshore.com
Jack-up HP Drilling Risers
Single Barrier System Considerations

- **Reducing OPEX**
 - Perform regular maintenance and inspection

- **Reducing CAPEX**
 - Consider high strength materials
 - Reduce wall thickness
 - Reduce riser weight
 - Reduce rig modifications
 - Decrease tensioner utilisation
 - Consider alternative connection systems
 - Reduce need for integral forgings
 - Permit high strength materials

Learn more at www.2hoffshore.com
Conclusions

- Selection of single or dual barrier systems should be taken on a case-by-case basis
- Should consider
 - CAPEX
 - OPEX
 - RISKEX
 - RAMEX
- Higher pressure, temperature and water depth, harsher environments and internal fluids increase the need for an assessment to be performed
- However a dual barrier system may not always give reduced risk

Learn more at www.2hoffshore.com
References and Further Reading

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com