HPHT - Subsea Design Challenges

J. McGrail

SUT - Subsea Communities - HPHT
Jan. 2011
HPHT - Subsea Design Challenges

John McGrail
2H Offshore Engineering Ltd
20th January 2011

Learn more at www.2hoffshore.com
Overview

- What is HPHT
- The subsea design problem
- Solutions

Learn more at www.2hoffshore.com
Context - Challenges & Risks - HPHT

Courtesy: Dave Turner BP

Learn more at www.2hoffshore.com
Where is the HPHT?

- North Sea,
- Norway,
- GOM
- Brazil (Sub Salt/Presalt)

Learn more at www.2hoffshore.com
Deep Water

HPHT - The Design Problem?

HP
>10,000psi
Internal
Shut-in

HT
>121 Deg C Max
Operating Temp

Corrosive conditions

Problem Relative Magnitude

Learn more at www.2hoffshore.com
How to Design for HPHT

- Bigger
 - Standard technology, just bigger
- Stronger
 - Higher strength materials
- More resistant
 - Improved corrosion resistance

Learn more at www.2hoffshore.com
Bigger - Pipe Wall Sizing

10,000ft Water Depth, 300kg/m³ Fluid, 135 Deg C Design Temp
X65 Grade Pipe, 3mm Corrosion Allowance, 12 Deg Top Angle

Pipe Manufacturing Limit?
Bigger - The Knock-on Effects

- Extreme self-weight loads compound wall thickness requirements

- Results in loads at the limit of:
 - Installation vessels
 - Host production vessels

- Introduces fatigue issues from fluctuating axial loads

- Thicker walls
 - Impact pipe weldability
 - Increased cycle times
 - Reduced fatigue performance
 - Reduced pipe availability
 - Reduced flow area
Stronger: Increased Material Grade

- Stronger materials essential to maintain line pipe size feasibility for standard line pipe manufacturing processes
- Alternative is forged pipe – expensive and lack of availability
- But – weldability is a problem…….

- Example HP deepwater drilling riser sizing data below:

<table>
<thead>
<tr>
<th>Minimum Required Wall Thickness (mm)*</th>
<th>Water Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5000</td>
</tr>
<tr>
<td>Internal pressure (psi)</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>OD (in)</td>
<td>13-3/8</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>19-1/2</td>
</tr>
<tr>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>OD (in)</td>
<td>13-3/8</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>19-1/2</td>
</tr>
<tr>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>OD (in)</td>
<td>13-3/8</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>19-1/2</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Stronger Flexible Pipe: Design Limits?

Flexible Pipe Present Range of Application

(Adapted from TECHNIP's Presentation at Dry Tree & Riser Forum)

• The 7.5-inch ID flexible pipe developed for water injection on Thunder Horse is a landmark as it established important records:
 Design Pressure (shut-in) = 10,000psi
 Design Water Depth = 6300ft (1920m)
 Allowable lifetime = 16.5 years (limited by sour service)

• More recently, Telemark 4-inch ID oil production flexible pipe has been developed for installation on:
 Design Pressure (shut-in) = 12,500psi
 Design Water Depth = 4500ft (1372m)
 Allowable lifetime = 20 years

Learn more at www.2hoffshore.com
More Resistance: Corrosive Conditions

- HPHT = Internal corrosion problems

- HPHT wells often associated with corrosive / sour conditions:
 - CO₂
 - H₂S

- Sour service performance sensitive to:
 - Partial pressures of H₂S present, and pH of the production fluid
 - Stresses in the pipe
 - Material properties of the pipe – flaws/grain structure
 - Hardness of the steel

- Problem for high pressure, high strength steel, high load applications (i.e. HPHT scenarios)

Learn more at www.2hoffshore.com
CO₂ Corrosion (Sweet Corrosion)

Corrosion Rate vs Partial Pressure and Temp

Heavy Pitting and General Wall Loss

Learn more at www.2hoffshore.com
H$_2$S Fatigue Life: Reduction Factor 10-100

Source: High pressure riser designs for ultra deepwater; J. Murray et al,

Learn more at www.2hoffshore.com
Material Selection

- **NACE**
 - Low alloy steels
- **Non NACE**
 - 13% Cr (410, F6NM)
 - Super Duplex
 - Inconel 625

Source: Oilfield Metallurgy – Lloyd-Thomas Consultancy

Learn more at www.2hoffshore.com
Clad Pipe - Inconel 625 - Metallurgical or Mechanically Lined

Learn more at www.2hoffshore.com
Installation: Large Wall Thickness / Cladding

- **Time / Cost:**
 - Installation is Majority of Pipeline / Riser CAPEX
 - 12-3/4” OD x 12.7 mm wt pipe joint
 - 45 minutes to weld, inspect and apply insulation field joint on
 - 12-3/4” OD x 40.0 mm wt pipe joint
 - 100 minutes
 - Clad pipe a further impact

- **Loads:**
 - Heavy pipe = large lay tensions
 - Demanding vessel specifications

Learn more at www.2hoffshore.com
The HPHT Solutions - Materials?

Materials Technology – key requirement:
- Higher strength steels
 - 70-80ksi offshore weldable
 - 125ksi for use with mechanical connectors
- Cost effective base material cladding
- Development of alternative materials:
 - Titanium / Aluminium alloys
 - Composites

Learn more at www.2hoffshore.com
The HPHT Solutions - Installation?

- More efficient offshore welding processes
 - Higher speed
 - Higher strength materials
 - Improved AUT and ECA capability for thick walled / clad pipe

- Friction welding?
- Electron beam welding?
- Laser welding?

Learn more at www.2hoffshore.com
The HPHT Solutions?

- **Installation**
 - Greater lift / lay capacity for heavier pipelines and risers

- **Other Equipment**
 - HPHT qualification required for:
 - Flexible pipe – HT qualification program ongoing (150ºC target)
 - Flexible joints (HPHT containing)
 - Connection system & sealing technology (flanges, connectors)

Learn more at www.2hoffshore.com
Summary

- HPHT is not a linear extrapolation, ‘bigger’ won’t work just on its own – Technology changes are necessary
- Material and welding technology is critical to success
- Alternatives to conventional welding are needed that are faster and can work with higher strength steel
- Alternative materials – lightness, strength and corrosion resistance
 - Composites
 - Titanium / Aluminium

- Alternatively........... Subsea HIPPS / subsea processing? Solve some of the problems away from long pipeline / riser sections

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

2H offshore

www.2hoffshore.com

Learn more at www.2hoffshore.com