Subsea Integrity Practices in GoM

S. Natarajan

SPE Applied Technology Workshop
Oct. 2011
Subsea Integrity Practices in GoM – A Case Study

Session 9: HSE
SPE Workshop
21st October 2011

Learn more at www.2hoffshore.com
Objectives

- Integrity Management Philosophy
- Performance Assessment Methods
- Integrity Issues and Mitigation Strategy
- Summary
Integrity Management Philosophy

- Assure fitness-for-purpose of the subsea system
- Compliance with regulatory requirements
- Effectively manage –
 - Risk to personnel safety
 - Risk to environment
 - Availability of asset
- Address threats arising from –
 - Internal (Corrosion, Erosion, Blockage, etc.,)
 - External (Corrosion, Impact, Structural Stress/Fatigue, etc.,)
 - Ageing related problems
 - Environment uncertainties

Learn more at www.2hoffshore.com
IM Procedure

- DFI Dossier
- Inspection data
- Monitoring data
- Operational experience

Risk based IM Plan

- Inspection Requirements
- Monitoring
- Mitigation Needs
- Operational Limits

Learn more at www.2hoffshore.com
Subsea Integrity Practices in GoM – A Case Study

Performance Assessment Methods

Learn more at www.2hoffshore.com
Performance Assessment Methods

1: Direct

2: Indirect

Learn more at www.2hoffshore.com
Subsea Integrity Practices in GoM – A Case Study

Integrity Issues and Mitigation Strategy

Learn more at www.2hoffshore.com
Failure Modes

- **Internal**
 - Internal corrosion – SSCC, HIC, CO2 corrosion
 - Erosion
 - Blockage – wax and hydrates
 - Polymer degradation
- **External**
 - Structural overstress
 - Structural fatigue
 - External corrosion
 - Impact
 - Structural wear-centraliser

Learn more at www.2hoffshore.com
Issue 1 – Environmental Uncertainties

Learn more at www.2hoffshore.com
Issue 1 – Track Environmental Records

- Environment record tracked against design limits
- Identify the events that exceed design limits for further investigation

Learn more at www.2hoffshore.com
Issue 2 – Riser Vortex Induced Vibrations (Failure Mode - Fatigue)

Target KPI - Extreme Loads, Long-term fatigue

Learn more at www.2hoffshore.com
Issue 3 – Flexible Riser Internal & External Corrosion

Issue
- Degradation methods difficult to predict or measure
- Few early warnings from external visual inspections
- Annulus volume testing is subjective

Recommendation
- Improve reliability and accuracy of volume tests
- Corrosion modeling or methods to predict onset of corrosion
- Embedded fiber optics for monitoring
- External inspection/scanning tools
- Acoustic monitoring

Learn more at www.2hoffshore.com
Issue 4 – Installation Issues

• Issue
 • High surface wellhead bending moments
 • Estimated fatigue life reduced to 2 yrs from 20 yrs

• Cause
 • Missing centraliser during installation

• Recommendation
 • Retrofit foam centralisers
 • Continuous monitoring of wellhead bending moments
Issue 5 – Material Degradation

- Issue
 - Flexjoint elastomer deterioration
 - Increased fatigue and extreme loads at riser-vessel interface
- Source
 - Prolonged exposure to high temperature/pressure

Learn more at www.2hoffshore.com
Issue 5 – Material Degradation

- **Recommendation**
 - Develop failure prediction methods based on P&T data
 - Improve CVI tools and modeling methods
 - Improved elastomeric materials
 - Implement learning's from drilling riser elastomers

Learn more at www.2hoffshore.com
Issue 6 – Coating Breakdown (External Corrosion)

• Issue:
 • External corrosion

• Cause:
 • Installation damage
 • Coating application procedure

• Recommendation:
 • Monitor CP readings
 • Surface preparation is key to effective long term coatings, which is the barrier to external corrosion
 • Design should consider extending the coating to reduce coating transitions

Learn more at www.2hoffshore.com
Issue 7 – Cathodic Protection Premature Depletion (External Corrosion)

• Issue:
 • Insufficient cathodic protection and hence external corrosion

• Cause:
 • Inadequate CP design
 • Increased current drawn from other components that should have been electrically isolated

• Recommendation:
 • Monitor CP readings (not always reliable)
 • Retrofit anodes, if depleted
 • Guided Wave Ultrasonics
 • Develop on-line methods for in-service corrosion prediction
Issue 8 – Marine Growth

• Issue:
 • Loss of VIV suppression efficiency
 • Increased drag on the system

• Recommendation:
 • Regular cleaning of marine growth
 • Develop efficient and effective cleaning tools
 • Improve anti-fouling treatments
 • Evaluate fouled fairing performance
Issue 9 – Flowline Snagging

Issue
- Remaining strength capacity

Cause
- GoM following a hurricane
- Final tilt – 8.8deg
- Response suggests 130 to 150te pull from flowline

Recommendation
- Detailed FEA to determine fitness-for-purpose
- Conductor plastic strains ~ 4%

Stress-Strain Curve: Ramberg-Osgood, K=1.13, n=27.13

Tilt Angle of Top of Spool Tree (deg)

Total Strain (Elastic + Plastic)

Conductor (Upper Bound Soil Strength)
Conductor (Lower Bound Soil Strength)
Casing (Upper Bound Soil Strength)
Casing (Lower Bound Soil Strength)
Max Allowable (API RP 2A)

Yield Strain = 0.2%

Learn more at www.2hoffshore.com
Issue 9 – Subsea Components

Issue
• Visual inspections gives little or no information on the health status

Recommendation
• Hydraulic fluid consumption KPI
• Control valve failure prediction
• Subsea communications health
• Electrical insulation health
• HPU pump cycle monitoring

Learn more at www.2hoffshore.com
Assuring ongoing availability of the subsea systems by:

- Practicing and budgeting integrity management as a compulsory activity instead of being reactive to integrity problems considering opportunity cost of shutdowns
- Ensuring competency of the personnel involved in all stages of IM process and in all disciplines
- KPI tracking through integrity monitoring and inspection thus tracking the performance over time and not just a snapshot in time
- Need to mature the monitoring systems available for deepwater systems
- Need to improve/develop methods for real time assessment of accumulated stress, fatigue, and corrosion
- Designs should include capacity for inspection or long term monitoring methods
- Design consideration for mitigation and/or replacement.