Drilling Riser Design Challenges and Improving Integrity

S. Natarajan

SPE Applied Technology Workshop
Oct. 2011
Drilling Riser Design Challenges and Improving Integrity

Session 3: Drilling and Completions
SPE Workshop
20th October 2011
Should we be concerned?
Objectives

- Loading
- Design Issues and Field Problems
- Strength and Fatigue Assessment
- Past Failures
- Integrity Monitoring and Effective Operations Management
Design Challenges

- Uncertainty in soils and currents
 - Limited or no data for new regions
- Uncertainty in rig selection
 - Want to assess fitness-for-purpose before selection
 - Data may not be available
- Lack of guidance on wellhead selection
 - Why choose one over another
- Variability in casing programme
 - No two programmes are the same
 - Variability in soil properties
 - Even when data is defined we have to work between bounds

Learn more at www.2hoffshore.com
Loading

- Well Construction Loads (Exploration and Development)
 - Weight of casing
 - Pressure from mud, cement and formation fluids
 - Temperature
- Drilling Mode (Exploration and Development)
 - Weight of BOP and LMRP
 - Loads due to vessel offset
 - Wave action and first order vessel motions
- VIV response of riser (currents)
Loading

• Intervention/Workover Mode (Development)
 • Loading from drilling riser with horizontal tree in place
 • Loading from WO/completion riser (like drilling riser) – applicable on the wellhead and conductor system

• Production Mode (Development)
 • Snag loading from fishing gear
 • Thermal and pressure loading from well fluids

• Seismic (Development)
Unknowns

- How many slick/buoyant joints to use?
- Optimum top tension to pull?
- Limiting seastate/current loading for drilling operations
- Limiting seastate/current for staying connected to the wellhead with the BOP
- Response time to disconnect riser during mooring line/DP failure
- Strength and fatigue capacity
Operating Envelope

- Minimise rig down time with prior knowledge of field specific operating limits

Shreenaath Natarajan

Learn more at www.2hoffshore.com
Operating Envelope

- Minimise rig down time with prior knowledge of field specific operating limits
Wellhead and Conductor System

- Wellhead and conductor components are integral part of the whole system
- Know the component limits and maximise rig operability

What-Breaks-First Analysis For 350m Water Depth

30in Conductor, Moderate Loading, 300kips Base Tension, 13.6ppg Mud

![Graph](graph.png)

Learn more at www.2hoffshore.com
Fatigue Capacity

- How long can I stay connected to the wellhead?
- Do I expect to re-enter the well for intervention/workover?
- Is it possible to extend the drilling duration due to side-tracking of the well?
Can Failure Happen?

- High pressure housing to surface casing weld fatigue failure

Censored intentionally

Learn more at www.2hoffshore.com

Shreenaath Natarajan
Can Failure Happen?

- Soft soil coupled with large motions

Censored intentionally

Learn more at www.2hoffshore.com
Field Problems

• Design Issues
 • Inadequate fatigue life, usually VIV driven
 • Changes in vessel and riser arrangement

• Field Problems
 • External cement shortfall
 • Conductor-casing cement shortfall
 • Wellhead stick-up
 • LP to HP housing lock malfunction
 • Extended drilling /workover operations
Conductor and Casing Installation Issues

• Elevation Tolerance
 • +2m not uncommon (drilling or jetting)
 • Adds to lever arm of loading on wellhead
 • Can make VIV response severe

• Inclination Tolerance
 • Typical target +/- 1.5 degrees
 • Expectation less than 0.5 degrees due to weight of conductor
 • Quality dependent on care during initial penetration
 • Vessel position
 • Current conditions
 • Soil uniformity
Improving System Integrity

- BP Schiehallion – severe currents and high VIV in 350-500m West of Shetland
- BP GoM – severe currents
- BP West Nile Delta VIV (4 well campaign)
- Statoil – old wells, new vessels with big BOP’s and large motions observed
- Total – severe currents and high VIV in 350-500m West of Shetland
- Woodside, Petronas, Repsol, and many others..
Improving System Integrity

- Norwegian North Sea
 - Motions and Fatigue
- West Nile Delta
 - Fatigue
- 3 Axis Accelerometer
- Dual axis angular rate
- Loggers located on
 - BOP
 - Wellhead
 - Conductor
 - Template
- Magnetic Holders
 - ROV Installed

Learn more at www.2hoffshore.com
Conclusions

• Design issues due to complex response and lack of prior field specific data can be overcome by the following:
 • Develop operating envelopes and incorporate in to a manual
 • Observe requirements of the manuals
 • Record operating conditions and confirm limits are not exceeded
 • Record times on well
 • Monitoring riser/wellhead to confirm acceptable fatigue response
 • Calibrate analysis software
 • Verify design data – soils, currents etc