Deepwater Drilling Riser Technical Challenges

B. Middleditch

IBC Energy Offshore Drilling Conference
Oct. 2011
Deepwater Drilling Riser Technical Challenges

Ben Middleditch

October 2011

Learn more at www.2hoffshore.com
About 2H Offshore
Riser & Conductor Engineering

- Founded in 1993
- 180 highly qualified engineers
- Global standardised procedures for seamless operation
- Extensive experience in all riser types
- Practical understanding of hardware and installation
- Leaders in marine structure dynamics
- A technology driven company
- Part of the ACTEON group

Learn more at www.2hoffshore.com
Introduction

- Present the challenges of moving to deepwater
 - Define the operational requirements of a deepwater drilling riser
 - Which of these become more difficult with deeper water

- Discuss options for overcoming these challenges
 - Modifications to conventional systems
 - Optimised well design
 - Alternative solutions

Learn more at www.2hoffshore.com
Contents

- Drilling Riser System Overview
- Drilling Riser Operability
- Challenges of Scaling to Deeper Water
- Conventional Solutions
- Alternative Technologies

Learn more at www.2hoffshore.com
Conventional Deepwater LP Drilling Riser
Conventional LP Drilling Risers

- Typically 21” OD marine riser
- 80ksi steel
- Range of Connector Types
- External Auxiliary Lines
- Buoyancy Modules to 10,000ft
- 18-3/4” Subsea BOP system

Learn more at www.2hoffshore.com
Loading

Learn more at www.2hoffshore.com
Drilling Riser Systems: Static Loading

Learn more at www.2hoffshore.com
Flexible Joint Rotation Limits

- <2° for drilling

Learn more at www.2hoffshore.com
Drilling Riser Systems: Operating Criteria

Flexible Joint Rotation Limits (<2° for drilling)
- Increasing top tensions increase operability

Learn more at www.2hoffshore.com
Drilling Riser Systems: Operating Envelopes

Flex joint rotation

RISER OPERATING ENVELOPE WITH CURRENT ONLY
400kips Base Tension - Mud Filled 1.35SG - Soft Soil Profile

Vessel Offset (% of water depth) vs. Surface Current Velocity (m/s)

- Drilling
 - FJ Rotation < 2deg (mean)
 - VM / Yield Stress < 0.67

- Connected (Not Drilling)
 - FJ Rotation < 90% max
 - VM / Yield Stress < 0.8

- Survival
 - FJ Rotation < 90% max
 - VM / Yield Stress < 1.0

Learn more at www.2hoffshore.com
Moving to Deeper Water

Learn more at www.2hoffshore.com
Scaling to Deeper Water: Top Tension Capacity

- Increased volume of drilling mud
- Increased internal burst pressure (HP reservoirs)
- Increased external hydrostatic collapse pressure
- Increased riser pipe wall thickness
- Limited by minimum ID for drill bits & casing hangers
- Higher axial stress

- Longer riser string
- Heavier riser string

- Increased Riser Top Tension
- Increased Vessel Tensioner Requirement

Learn more at www.2hoffshore.com
Scaling to Deeper Water: Drilling Riser Buoyancy

- External buoyancy attached to riser joints reduce the in-water mass of the riser string

- Typically made from syntactic foam
 - Glass or ceramic hollow micro spheres
 - Suspended in a polymer matrix

- External durable coating

Learn more at www.2hoffshore.com
Scaling to Deeper Water: Buoyancy Impacts

- Greater deck space usage
- Handling difficulties
- Increased riser drag
- Reduced buoyancy effectiveness at greater depths
- Rotary table opening size limit

Learn more at www.2hoffshore.com
Reduced buoyancy effectiveness at greater depths
Scaling to Deeper Water: Vortex Induced Vibration Fatigue

- All bodies in current flows experience forces.
- When an in-line current causes the bodies to vibrate at a natural frequency in the cross-flow direction this is called VIV.
- Constant vibration of the riser causes stress cycling, which causes fatigue damage on the riser, which can cause the riser to fail.

Learn more at www.2hoffshore.com
Scaling to Deeper Water: Vortex Induced Vibration Fatigue

- Longer riser strings have lower natural frequencies
- So slow currents which may not excite a shallow water riser can excite the same diameter riser in deeper water
- For the same current speed higher frequencies can be excited
- These higher frequencies have greater curvatures and larger bending stress cycles

Learn more at www.2hoffshore.com
Conventional LP Drilling Risers

- **Deepwater Issues**
 - High tension requirements (2500kips+ for 10,000ft)
 - Buoyancy becomes less efficient
 - Highly susceptible to VIV (Vortex Induced Vibration)
 - Complex Choke / Kill line interaction and sealing due to large riser deflection
 - Worldwide lack of deepwater rigs
 - High rig cost
 - Rig availability will dictate development schedule

Learn more at www.2hoffshore.com
Solutions

Learn more at www.2hoffshore.com
Conventional Solutions

- New larger capacity rigs
 - Greater deck capacity
 - Larger tensioner systems
 - Larger rotary tables

- Long term rig contracts

- VIV suppression
 - Strakes
 - Distributed buoyancy
 - Tension variation

- Optimised well design

Learn more at www.2hoffshore.com
Well Construction: Design for Fatigue Resistance

- Optimise the choice of well components:
 - Conductor size
 - Conductor joint length
 - Weld quality

- Construction variables:
 - Wellhead stick-up
 - Cement shortfall

- Impact of riser design:
 - Operation mode
 - Subsea component size

Learn more at www.2hoffshore.com
Well Construction: Design for Fatigue Resistance

- Conductor to Wellhead Girth Weld
- Extension Girth Weld
- Conductor Coupling
- Conductor to Coupling Weld

Learn more at www.2hoffshore.com
BENDING MOMENT DISTRIBUTION ALONG CONDUCTOR
300kips Base Tension - 380 W.D. - 10 Year Current - Upper Bound Soil

Elevation above Seabed (m)

Bending Moment (kNm)

Learn more at www.2hoffshore.com
Effects of Conductor Sizes

Generic Wellhead And Conductor Fatigue Analysis
MINIMUM UNFACTORED FATIGUE LIFE
D Class SCF 1.3

Fatigue life increased by a factor of 5 with an upgrade from 30” OD to 36” OD

Learn more at www.2hoffshore.com
Effects of Weld Quality

Increase in fatigue life by a factor of 10 when achieving a C class weld compared to an E class

Learn more at www.2hoffshore.com
Effects of Wellhead Stick-up

MINIMUM UNFACTORED FATIGUE LIFE
C Class SCF 1.1, Weld 0.935m Below Top of Conductor

2m Stickup 40% - 50% better than 3m Stick-up

Learn more at www.2hoffshore.com
Effects of Cement Shortfall

No cement shortfall 50% better than 2m cement shortfall

Learn more at www.2hoffshore.com
Effects of Operating Mode

Drilling Mode
(no Subsea tree)

Completion Mode
(with Subsea tree)

Learn more at www.2hoffshore.com
Effects of Operating Mode

Completion Mode 3 times more damaging than Drilling Mode

Learn more at www.2hoffshore.com
Well Construction Findings

- Larger LRMP & BOP stacks typical on deepwater drilling rigs have a detrimental affect on a wellhead fatigue performance
- This can be offset by:
 - Incorporating a larger diameter conductor
 - Choosing conductor joint lengths based on peak lateral load
 - Specifying better weld details
 - Using a rigid lock down wellhead
 - Ensuring a good conductor cement job
 - Ensuring a low wellhead stick-up

Learn more at www.2hoffshore.com
Alternative Solutions

- Steel replacements
- HP surface BOP drilling riser
- Near Surface BOP Systems
- Free standing drilling riser

Learn more at www.2hoffshore.com
Steel Replacements

- Drilling Riser Joints including Choke & Kill Lines
 - Composite
 - Aluminium
 - Titanium

- Issues
 - Lower stiffness induces greater riser deflections
 - Lower wear resistance (composite & aluminium)
 - Lower corrosion resistance (aluminium)
 - Higher production costs

Learn more at www.2hoffshore.com
HP Surface BOP
Drilling Riser

Surface BOP
Stress Joints
Flex-Joint
Telescopic Joint
Subsea ESD
Subsea Wellhead
Tie-back connector
13-3/8” Casing (typ.)
Buoyancy Modules (Optional)

Learn more at www.2hoffshore.com
HP Surface BOP Drilling Riser

- 13-5/8” 15ksi Surface BOP
- Typically 13-3/8” or 16” casing
- Subsea ESD for emergency disconnection
- Use of additional buoyancy dependent on vessel tension capacity and water depth
- Top configuration to suit vessel (modifications may be required)
- Casing can be re-used or run downhole on next well
- Allows lower spec / cost rigs to be used in deepwater applications

Learn more at www.2hoffshore.com
Near Surface BOP Systems

- Elevates BOP to near surface region (100m – 250m water depth)
- Buoyancy tank used as ‘artificial seabed’
- Standard rig marine riser and BOP used to surface
- Large diameter tie-back casing (21”+) used to seabed
- System can freestand with BOP in event of disconnect
- Allows use of 3rd generation rigs for deepwater wells

Learn more at www.2hoffshore.com
Freestanding Drilling Risers

Conventional upper riser

Upper disconnect package

Aircans to support lower riser

Conventional lower riser

LMRP and BOP

Aircan to support casing and BOP

Well casing

Tie-Back Connector

Learn more at www.2hoffshore.com
Summary

- Scalability of conventional marine risers becomes increasingly difficult with increasing water depths.
- New purpose-built rigs overcome the majority of these challenges, but their availability is limited.
- New technologies are being championed which can allow the upgrading of older rigs for use in deeper water.
- Problems still exist such as VIV and other forms of fatigue that need to be considered in well planning.

Learn more at www.2hoffshore.com
Thank you for your time

Questions?

Further information:

2H Offshore Engineering
www.2hoffshore.com
ABERDEEN +44 1224 452 380
LONDON +44 1483 774 900
Learn more at www.2hoffshore.com