Standardised Freestanding Hybrid Risers for Deepwater FPSOs

J Bob-Manuel

FPSO Summit
Nov. 2011
Standardized Freestanding Hybrid Riser Systems for Deepwater FPSOs

John Bob-Manuel
Senior Engineer
2H Offshore Engineering Ltd
1st November 2011

Learn more at www.2hoffshore.com
Freestanding Hybrid Risers

- 2H overview
- Why is there a need for them?
- Configurations
- Current examples
- Alternatives

Learn more at www.2hoffshore.com
2H Overview

- Riser and conductor systems specialists
- 170+ high quality engineers
- Unique combination:
 - Complex analysis
 - Equipment detail design
- Part of Acteon Group

Learn more at www.2hoffshore.com
Acteon Group

- 18 specialist subsea Companies
- £310m Turnover
- 51% owned by First Reserve Corporation

Linking Subsea Services

Learn more at www.2hoffshore.com
Deepwater Riser Design Challenges

- Long unsupported lengths
- High pressures
- Design life of 20-30 years
- Environmental loading
 - Current
 - Wave
- FPSO
 - Vessel motions
 - Vessel offsets
 - Payload limitations
 - Riser-FPSO interfaces
- High extreme stresses
- High fatigue damage rates
Deep Water Riser Design Options: Flexible Risers

- Compliant response
- Not fatigue sensitive
- Installation friendly
- Limitations
 - Water depth
 - Pressure
 - Diameter
 - Temperature
- Expensive
- Reliability?

Learn more at www.2hoffshore.com
Deep Water Riser Design Options: Steel Catenary Riser (SCR)

- 6-30” diameter
- 1,000 – 10,000ft water (8,000ft installed)
- Sensitive to vessel and environment
 - Extreme loads
 - Fatigue motions
 - VIV
- Payload impact on host facility
- Complex vessel interface
 - Flex joint
 - Stress joint
- Heave optimised vessels (Spar, TLP)

Learn more at www.2hoffshore.com
Freestanding Hybrid Riser

Learn more at www.2hoffshore.com
Free Standing Riser Configuration

Learn more at www.2hoffshore.com
Single Line and Bundle FSHRs

SINGLE LINE
(SLOR / COR)
Kiz A & P52
Kiz B

BUNDLES
(Internal)
Girassol
(External)
Block 18

Learn more at www.2hoffshore.com
Buoyancy Tank

- Maintain riser verticality
- Steel plate structure
- Flat or hemispherical ends
- Pressure balanced design
- Compartmentalised

- Design up to:
 - 40m tall
 - 6m diameter
 - ~700Te upthrust

- Limited by:
 - Fabrication site
 - Handling / Installation restrictions

Learn more at www.2hoffshore.com
Upper Assembly - Conventional

- Tubular frame structure
- Loading interface between:
 - Top of riser pipe
 - Buoyancy tank
 - Flexible jumper
- May require:
 - Articulation connection
 - Flexible jumper pull-in
 - Intervention entry point
- Design up to:
 - 23m tall
 - 55Te

Learn more at www.2hoffshore.com
Upper Assembly - Alternatives

Learn more at www.2hoffshore.com
Lower Assembly

- Tubular frame structure

- Loading interface between:
 - Bottom of riser pipe
 - Foundation
 - Rigid base jumper

- May require:
 - Articulation connection
 - Stress joint
 - Riser base gas lift

- Design up to:
 - 5m – 20m tall
 - 10 - 30Te

Learn more at www.2hoffshore.com
Rigid Base Jumper

- Steel pipe / induction bends

- Accommodate relative movement between riser and flowline
 - Pipeline expansion
 - Riser motions

- Critical fatigue mechanisms
 - Riser motions (drift / riser VIV)
 - Jumper VIV
 - Thermal cycling
 - Slugging

Learn more at www.2hoffshore.com
Rigid Base Jumper

- Steel pipe / induction bends

- Accommodate relative movement between riser and flowline
 - Pipeline expansion
 - Riser motions

- Critical fatigue mechanisms
 - Riser motions (drift / riser VIV)
 - Jumper VIV
 - Thermal cycling
 - Slugging

Learn more at www.2hoffshore.com
Freestanding Riser Evaluation

Advantages
- Decoupled from vessel motions
- Not sensitive to environmental loading
- Excellent fatigue performance
- Low vessel payload
- Pre-installable
- Flow assurance flexibility
 - Large insulation thicknesses
 - Pipe-in-Pipe
 - CRA lined pipe
- Local content
 - Piles
 - Buoyancy Can
- Opportunity for design standardisation

Disadvantages
- Large spatial requirement
- Clearance issues
- Increased design complexity
- High CAPEX compared to SCR
- Installation challenges
 - Large components
 - Overall lift weight/height

Learn more at www.2hoffshore.com
Benefits of Standardising Freestanding Hybrid Risers

- Differentiate on ability to install pipe efficiently, NOT ability to:
 - Develop riser concepts
 - Conduct detail design of products/components

- Allows Operator to drive technical solution

- Risk & responsibility fairly distributed:
 - Operator - Global system performance
 - Contractors - Component design & installation

- System engineered once

- Increased market competition

- Wider application of ‘available’ installation vessels

Learn more at www.2hoffshore.com
Freestanding Risers to Date

<table>
<thead>
<tr>
<th>Type</th>
<th>Field</th>
<th>Status</th>
<th>Owner/ Field Operator</th>
<th>Yr. Installed</th>
<th>Region</th>
<th>Water Depth (ft)</th>
<th>Water Depth (m)</th>
<th>Vessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundle</td>
<td>Green Canyon 29/ Garden Banks 388</td>
<td>De-commissioned</td>
<td>Placid Oil Company/ Ensearch</td>
<td>1988/ 1994</td>
<td>GoM</td>
<td>1,529/ 2,096</td>
<td>466/ 639</td>
<td>Semi-Sub</td>
</tr>
<tr>
<td>Single Line</td>
<td>Girassol</td>
<td>Operating</td>
<td>Total Elf</td>
<td>2001</td>
<td>Angola</td>
<td>4,430</td>
<td>1,350</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>Rosa</td>
<td>Operating</td>
<td>Total Elf</td>
<td>2007</td>
<td>Angola</td>
<td>4,430</td>
<td>1,350</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>BP Greater Plutonio</td>
<td>Operating</td>
<td>BP</td>
<td>2007</td>
<td>Angola</td>
<td>4,300</td>
<td>1,311</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td>Single Line</td>
<td>Kizomba A/B</td>
<td>Operating</td>
<td>Exxon</td>
<td>2003/ 2005</td>
<td>Angola</td>
<td>3,330 to 4,200</td>
<td>1,006 to 1,280</td>
<td>Spread Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>* Block 31 NE</td>
<td>Fabrication</td>
<td>BP</td>
<td>2010</td>
<td>Angola</td>
<td>6,890</td>
<td>2,100</td>
<td>Turret Moored FPSO</td>
</tr>
<tr>
<td></td>
<td>Roncador P-52</td>
<td>Operating</td>
<td>Petrobras</td>
<td>2007</td>
<td>Campos Basin</td>
<td>5,906</td>
<td>1,800</td>
<td>Semi-Sub FPU</td>
</tr>
<tr>
<td></td>
<td>* Cascade/ Chinook</td>
<td>Detailed Design/ Execute</td>
<td>Petrobras</td>
<td>2011</td>
<td>GoM</td>
<td>8,531</td>
<td>2,600</td>
<td>Turret Moored FPSO</td>
</tr>
</tbody>
</table>

*To be installed

Learn more at www.2hoffshore.com
Kizomba A & B - Exxon

- First field to use SLOR
- Kizomba A – 5 risers
 - 1 x Water Injection
 - 2 x Water Injection
 - 2 x Gas Injection
- Kizomba B – 5 risers
 - COR - riser base gas lift
 - 2 x Production PIP
 - 1 x Test PIP
 - 2 x Water Injection

- Kizomba Satellites – Two additional CORs (2011 installation)

Learn more at www.2hoffshore.com
Girassol Riser Tower

Learn more at www.2hoffshore.com
BP Block 18 Riser Bundle

Learn more at www.2hoffshore.com
Other Developments

- **Petrobras Cascade & Chinook**
 - First FPSO in GoM
 - 2600m water depth
 - Disconnectable turret required for hurricane event
 - 5 single line freestanding risers
 - Freestanding Riser is ‘enabling technology’

- **BP Block 31 PSVM**
 - Deepest SLHRs in WoA
 - 2000m water depth
 - 9 SLHRs
 - External bow mounted turreted FPSO

Learn more at www.2hoffshore.com
Alternatives/Developments

- Freestanding Risers
 - Reduced cost - top assembly optimisation
 - Grouped arrangement
- SCR
 - Weight optimised
 - Lazy Wave – Shell BC10
 - Buoyancy supported

Learn more at www.2hoffshore.com
BSR – Riser Supporting Buoy

- Concept developed in the 90’s by DeepStar for 1000m.
- Being evaluated by Petrobras for Guara and Iara

Learn more at www.2hoffshore.com
BSR - Riser Supporting Buoy

- BSR is a hybrid concept that takes advantage of the best features of SCRs and flexibles.
- SCRs: Less expensive than flexibles. Suitable for use in ultra-deep waters with large diameter sizes.
- Flexible jumpers have excellent fatigue behavior.

Learn more at www.2hoffshore.com
FPSO Interfaces

- Key interfaces
 - Flexible end terminations and bend restrictors

- Key parameters affecting design
 - Turret vs spread moored
 - Position of riser hangoff
 - Space for riser end terminations
 - Maximum hang off weight
 - Vessel motions
 - Heading analysis
 - Mooring analysis

- Interface mechanism with FPSO contractor needs establishing early on!

Learn more at www.2hoffshore.com
Thank you for your time.

Questions....

Further information:

2H Offshore Engineering Limited
www.2hoffshore.com
+44 1483 774900

Learn more at www.2hoffshore.com