Design Challenges & Solutions for Large Diameter Export Risers

E. Tellier, H. Howells, M. Cerkovnik

AOG
Feb. 2011
Design Challenges & Solutions for Large Diameter Export Risers

Elizabeth Tellier, Hugh Howells & Mark Cerkovnik
2H Offshore Engineering

AOG 2011
Agenda

- WA export riser design challenges
- Development options & design parameters
- Current industry examples
- Export riser types and design limitations
- Alternative large diameter export riser arrangements

Learn more at www.2h-offshore.com
WA Export Riser Design Challenges

- Severe environments
 - Cyclones
 - Swells
- Floaters in ‘shallow’ water
- Long service lives (40+ years)
- Design for larger return periods
- Sour service
- Minimal processing on vessel

Learn more at www.2hoffshore.com
Development Options

- Export Risers
 - Flexible
 - Steel Catenary Riser (SCR)
 - Top Tension Riser (TTR)
 - Freestanding Hybrid Riser (FSHR)

- Vessel
 - Semi Submersible
 - TLP
 - FPSO
 - Spar

Learn more at www.2hoffshore.com
Design Parameters

- Gas developments
- Water depths 300m to 1,300m
- Flexible riser ID 16”+
- Steel riser OD 18” +
- Operating Pressure 135 to 550 bar

Learn more at www.2hoffshore.com
Large Diameter Risers

Current Industry Examples

<table>
<thead>
<tr>
<th>Riser Type</th>
<th>Field Name</th>
<th>Water Depth (m)</th>
<th>Max OD/ID (in)</th>
<th>Vessel Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible</td>
<td>Bonga</td>
<td>370</td>
<td>18.6</td>
<td>FPSO</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Statfjord B</td>
<td>145</td>
<td>19</td>
<td>FPSO</td>
<td>NS Nor</td>
</tr>
<tr>
<td>SCR</td>
<td>Prince</td>
<td>450</td>
<td>12</td>
<td>TLP</td>
<td>GoM</td>
</tr>
<tr>
<td></td>
<td>Ind. Hub</td>
<td>2,400</td>
<td>20</td>
<td>Semi</td>
<td>GoM</td>
</tr>
<tr>
<td></td>
<td>Thunder Horse</td>
<td>2,150</td>
<td>24</td>
<td>Semi</td>
<td>GoM</td>
</tr>
<tr>
<td>TTR</td>
<td>Snorre</td>
<td>320</td>
<td>20</td>
<td>TLP</td>
<td>NS Nor</td>
</tr>
<tr>
<td></td>
<td>Heidrun</td>
<td>350</td>
<td>24</td>
<td>TLP</td>
<td>NS Nor</td>
</tr>
<tr>
<td>FSHR</td>
<td>Kizomba</td>
<td>1,015</td>
<td>12.75</td>
<td>FPSO</td>
<td>Angola</td>
</tr>
<tr>
<td></td>
<td>P52</td>
<td>1,800</td>
<td>18</td>
<td>FPU</td>
<td>Brazil</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
Flexible Pipe Technology Limits
Large Diameter Risers

Learn more at www.2hoffshore.com
Steel Catenary Risers (SCR) Large Diameter Limits

GoM Projects
Large Diameter SCR by Function and Vessel Type

Learn more at www.2hoffshore.com
Why might WA export risers be different?

- Many riser system variations evaluated in the past

- Gulf of Mexico
 - Deep and Ultra deep water (1,000m to 2,500m+)
 - Predominately Oil service
 - Harsh environment

- West Africa
 - Deep water (1,300m to 2,700m)
 - Predominately Oil service
 - Mild environment

- Norwegian Sea/West of Shetland
 - Shallow and marginally deep water (350m to 1000m)
 - Gas and oil
 - Harsh environment

- Australia’s NWS does not fully fit into any of these categories
 - Water depth (300m to 1300m)
 - Gas
 - Harsh environment

- Modifications may be needed for robust riser solutions

- Alternative arrangements based on extensive work done previously for WoS and Norwegian Sea

Learn more at www.2hoffshore.com
Steel Catenary Risers (SCR) and Alternatives

Learn more at www.2hoffshore.com
Weighting near touchdown improves performance

Learn more at www.2hoffshore.com
SCR Alternatives
Weight Optimization

SCR curvature in TD zone is reduced by 20% with additional weight

Learn more at www.2hoffshore.com

OMAE 29049, 2007
Lazy Wave Catenaries 800m

Plan length 1.25 – 2.5 x water depth

Learn more at www.2hoffshore.com
Lazy Wave Catenary Response
Large Diameter/Deep Water

28in, 2300m water depth

Learn more at www.2hoffshore.com
Lazy Wave Catenary Response
Effect of Internal Fluid - 30” OD

Learn more at www.2hoffshore.com
SCR Vessel Interface Design

- **Flex-joints**
 - Historic failures
 - Pressure cycles
 - High Temperature
 - Larger diameter – increased stiffness
 - Gas service – high and low temp
 - 24”, 90C, 3700psi (255 bar)

- **Stress Joints**
 - Large loads from vessel offset
 - Multiple forgings for large diameters
 - Titanium alternative

Learn more at www.2hoffshore.com
SCR Alternatives
Bottom Weighted Riser

Vertical Section
Flex Joint/Elbow and Weight Assembly
Horizontal Section

Tether (3 Off)
Pile Foundation

Learn more at www.2hoffshore.com
SCR Alternatives
Bottom Weighted Riser

Learn more at www.2hoffshore.com
SCR Alternative
Tethered Riser Buoy

Petrobras Pre Salt Development

Learn more at www.2hoffshore.com
Top Tensioned Risers

- Wellbay interface
 - Large valve stacks
 - Flexible jumper
 - Congestion/routing of topside piping
- Stroke sensitive
- Connector design

Learn more at www.2hoffshore.com
Export TTR

Alternatives Jumper Arrangements

- 30” OD TTR
- Single 24” rigid jumper with flex joints
- Multiple 12” rigid jumper with flex joints
- Multiple 12” titanium jumpers

Learn more at www.2hoffshore.com
Export TTR Base Arrangement

Learn more at www.2hoffshore.com
Freestanding Hybrid Riser

- Clearance issues
- Large spatial requirement
- Size of flexible jumper ID
- Pigging

Solutions
- Dual Jumpers
- Bundle with multiple jumpers/modified manifold
- Use of intervention vessel for pigging

Learn more at www.2hoffshore.com
FSHR Alternative Bundle

- Manifold Block
- Flexjoint
- Ball valve
- 14 inch ID gas export jumpers
- Latch Connector
- Ball valve
- 30 inch gas export line
- 14 inch ID production

Learn more at www.2hoffshore.com
Bundle Riser Base with 30in Core

Learn more at www.2hoffshore.com
Summary

- Current and future production systems for offshore Western Australia require the use of large diameter risers for export of gas
- Riser design limits may impact the selection of production facility
- Export riser choice dependant on water depth, diameter, vessel and environment
- Flexible riser greater than 16”ID - limited by water depth and pressure ratings
- SCR, TTR and FSHR are optimal solutions for large diameter export riser solutions in WD>500m
- Use of Norway NS and WOS concepts and current GoM deep water riser technology will enable feasible riser solutions for NWS

Learn more at www.2hoffshore.com
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com