An Overview of Advances in Flexible Riser and Flowline Technology

H. Ha

Offshore Convention Myanmar
Riser & Conductor Engineering

Houston | Rio de Janeiro | Aberdeen | London | Kuala Lumpur | Perth | Beijing

Learn more at www.2hoffshore.com
An Overview of Advances in Flexible Riser and Flowline Technology

Presented by Hanh Ha
4th OC Myanmar
January 2016

Learn more at www.2hoffshore.com
Overview

- A little about 2H
- Introduction to Un-Bonded Flexible Pipe
- Developments in Flexible Pipe Technology
- How can this be applied to Myanmar?
- Summary

Learn more at www.2hoffshore.com
About 2H Offshore
Riser & Conductor Engineering

- Founded in 1993
- 250+ highly qualified engineers
- Global standardised procedures for seamless operation
- Extensive experience in all riser types
- Practical understanding of hardware and installation
- Leaders in marine structure dynamics
- An independent, technology driven company
- Part of the ACTEON group

Learn more at www.2hoffshore.com
2H - Global Integrated Team

London

Houston

Rio de Janeiro

Aberdeen

Kuala Lumpur

Perth

Beijing

Learn more at www.2hoffshore.com
2H Areas of Expertise

Drilling, Completion & Workover

- Marine drilling risers
- Jack-up risers
- Subsea well conductors
- Completion & workover risers

Production & Export

- Surface BOP drilling risers
- FPS dry tree production risers
- Fixed platform well conductors
- Jack-up production risers
- Steel catenary risers
- Freestanding hybrid risers
- Flexible risers
- Umbilicals

Learn more at www.2hoffshore.com
Services

Concept Design & FEED
- Riser feasibility assessment and concept evaluation
- Riser sizing, vessel and field layout
- Preliminary analysis and engineering

Detailed Engineering
- Detailed design of the complete system and individual components
- Material selection, coating and corrosion protection design
- Equipment specifications and qualification, Interface management
- Gulf of Mexico CVA

Procurement management
- Vendor qualification and preparation of bid packages
- Issue RFQs, technical and commercial bid evaluation
- PO management and expediting
- QA/QC - witnessing and inspection

Fabrication & Installation Support
- Fracture mechanics analysis (ECA)
- Fatigue qualification and testing
- Fabrication management
- T&I engineering and analysis
- Gulf of Mexico CVA

Integrity Management & Monitoring
- Inspection planning
- Monitoring system design
- Dynamic data processing

Learn more at www.2hoffshore.com
Introduction to Un-Bonded Flexible Pipe

Annulus – Space between the two extruded polymer fluid barriers
Protects the Carbon Steel Wires which are not Corrosion Resistant

Learn more at www.2hoffshore.com
Flexible Riser Configurations

FREE HANGING

LAZY WAVE

STEEP WAVE

TETHERED LAZY WAVE

STEEP S

LAZY S

Learn more at www.2hoffshore.com
Flexible Pipe - Statistics

- > 3,300 flexible pipes in service
- > 39,000 flexible pipe operational years
- 58% of flexible pipes installed are risers
- 76% of all flexible pipe have design pressure below 345 bar (5,000 psi)
- 90% of all flexible pipe is below 10-inch (ID)
- 70% pipes are used for design temperature less than 80° C (176° F)
- 70% of all flexible risers in water depths less than 1,000 m WD

Source: Subsea UK

Learn more at www.2hoffshore.com
Categories of Failure Modes

• Progressing from inside
 – Carcass fatigue
 – Carcass collapse
 – Erosion
 – Temperature cycling fatigue
 – Ageing
 • Chemicals
 • Temperature
 • Water
 – $\text{H}_2\text{S} / \text{CO}_2$ diffusion \rightarrow acid annulus
 – Armour fatigue
 – Vent system malfunction
 (external sheath breach)

• Progressing from outside
 – Wear from interfacing structures (arch, GT, bend stiffener)
 – Wear of fabric tape
 – Dropped objects
 – Interference with structures
 – Entanglement with other lines
 – External sheath breach
 – Aging
 – Corrosion
 – Hydrogen Induced Stress Cracking (HISC)

Learn more at www.2hoffshore.com
Developments in Flexible Pipe Technology

New advances in flexible pipe technology ready for use now:

- New Carcass Options
- New Pressure Sheath Polymers
- Increased Sour Service
- Composite pipe

Learn more at www.2hoffshore.com
New Carcass Designs

- Why do we need new designs?
 - Greater Collapse Resistance – Hydrostatic force
 - Greater Crushing Resistance – Installability
 - FLIP – Flow Induced Pulsations

Material Selection
- Traditionally 316L – New options – 2205, 2304, 2507
- Offer greater corrosion and higher strength – greater collapse resistance

Carcass Geometry
- Modification to Carcass Profile
- Improve prediction capability
- Requires modelling work hardening
- Elimination of flow induced vibration

Learn more at www.2hoffshore.com
New Polymer Pressure Sheath

- Why do we need new Polymers?
 - Greater Temperature Resistance – High temperature (150°C) and low temperature blow down (-30°C)
 - Improved Creep Resistance
 - Improved Notch Resistance

Material Selection
- Traditionally options – PA11, PVDF
- New options
 - TP35 – PE derivative = 345Bar at 90°C
 - HPPA – High Temperature Polyamide = 70°C operating temperature at pH4
 - Coflon XD – Extra Ductile derivative of PVDF = -30°C to 150°C Operating temperature; fatigue life improved by factor of 10; single layer extrusion

Learn more at www.2hoffshore.com
Mono layer Vs Bi-Layer Pressure Sheath – Blowdown

- What happens when you depressurise too quickly?
 - Collapse of the polymer pressure sheath
 - Blistering

- A bi-layer design has a **LOW** instantaneous depressurisation rate limit – Typically 200Bara per hour

- A mono layer design has a **HIGH** instantaneous depressurisation rate – Significantly greater than 400Bara per hour. This is required for blowdown operations.

Learn more at www.2hoffshore.com
Greater Sour Service

- Flexible pipes have a volume called an annulus
- \(\text{H}_2\text{S} \) can diffuse into the annulus
- \(\text{H}_2\text{S} \) absorption layer – Reduce corrosion and SCC for armour wires

Learn more at www.2hoffshore.com
Spoolable Composite Pipe

- Why do we need composite pipe?
 - High Temperature and Pressure Resistance
 - No annulus – no corrosion issues
 - Light weight for deep water applications
 - Certain options can be significantly cheaper

Who’s making it?
- Magma m-pipe – carbon fibre with peek matrix
- Airborne reinforced thermoplastic pipe – E-glass with Polyamide matrix
- NOV – glass epoxy with PU liner

Disadvantages?
- Magma m-pipe – Expensive, particularly for larger bore sizes
- Airborne and NOV – Shallow water only (150m water depth max)

Learn more at www.2hoffshore.com
How can this be applied to Myanmar?

Case Studies

Learn more at www.2hoffshore.com
Wellstream
Dai Hung Flexible Global Analysis

- Detailed Global Analysis
- Offshore Vietnam
- 110m water depth
- Floating Production Unit
- Lazy-S Configuration
- Additional detailed analysis for the Catenary Anchor leg Mooring Buoy (CALM)

Learn more at www.2hoffshore.com
Statoil Peregrino WAW Re-Analysis Study

- Re-Analysis and verification
- Offshore Brazil
- 95m-135m water depth
- External Turret Moored FPSOs
- 6 Weight Aided Wave Risers
- 4 Lazy Wave Power Umbilicals
OGX – OSX2 and OSX3

- From Conceptual to Detailed Subsea Engineering
- Tubarão Azul (OSX-2)
 Tubarão Martelo (OSX-3)
- Offshore Brazil
- 135m, 105m water depth
- Turret Moored (FPSOs)
- Lazy-S, Pliant Wave, Weight Aided Wave (WAW) Configurations
- 26 Flexible Risers
 (Gas Injection/ Lift/Export, Water Injection and Production)

Learn more at www.2hoffshore.com
Conductor Supported Modular Offshore Structure

- Small platform or platform extension to support surface (dry) trees
- Alternative to a jacket
- Low cost
- Small structures, local fabrication
- Short installation, using a jack-up
- Fast schedule – 6-9 months delivery

Learn more at www.2hoffshore.com
Low Cost Shallow Water WHP Solution – CoSMOS
CoSMOS WHP – Designed & Built in Malaysia for $12m USD

The unmanned TBDP-A CoSMOS WHP comprises of stabilization frame and topsides with three (3) different level which are:

1. Upper Deck
2. Mezzanine Deck
3. Lower Deck & Stabilization Frame

A subsea stabilization frame is **installed prior to topside installation** in order to commence the drilling activity via jack-up rig. **Topside is installed after drilling and completion.**

Designed and fabricated locally in Malaysia in 10months for $12m USD

Learn more at www.2hoffshore.com
Tullow Oil TEN

- Detailed Design
- Tweneboa, Enyenra, Ntomme fields in Offshore Ghana
- 1425m water depth
- Turret Moored FPSO
- Lazy Wave Flexible Risers
 - 3 Stages Campaigns
 - P50 – 11 risers, 4 umbilicals
 - P10 – 4 risers, 1 Umbilical
 - Future – 2 risers, 2 Power Cables

Learn more at www.2hoffshore.com
Tullow Oil TEN

Learn more at www.2hoffshore.com
Feasibility assessment of the system to transfer the production oil and water from the Tension Leg Wellhead Platform (TLWP) to an FPSO located 1500m away
9 FSHR Pre-FEED, FEED and Detailed Design
• Global analysis
• Systems engineering
• Package engineering
• Procurement and Fabrication support
• Installation support

Learn more at www.2hoffshore.com
Total/HMC Kaombo FSHR Detailed Design

Project Overview:
- 2 FPSOs, 18 STTRs (6 PIP) offshore Angola
- HMC / Technip consortium
- 2H part of integrated team with HMC

2H Scope:
- Buoyancy Tank package engineering and design
- STTR Systems Engineering
- Global analysis
- Detailed FEA (for URA / LRA)

Learn more at www.2hoffshore.com
Petrobras
BSR – Guara and Lula

Learn more at www.2hoffshore.com
Dis-connectable Turret

Dis-connectable Turret Analysis

Learn more at www.2hoffshore.com
Summary

- Exciting new **qualified** flexible riser pipe technology.
- Flexible pipe ready for **Shallow** and **Deep water** applications.
- A number of development options solutions for both shallow water and deep water developments already exist.
- Hybrid riser solutions for **Ultra Deep Water** is an industry enabler.

Learn more at www.2hoffshore.com
2H Offshore Experience (I)

Concept Design and FEED

<table>
<thead>
<tr>
<th>Company</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petrobras</td>
<td>Export Flexible Jumper on P-52 Single Line Offset Riser (SLOR)</td>
</tr>
<tr>
<td>Perenco</td>
<td>Su Tu Nau Flexible Riser Feasibility Study</td>
</tr>
<tr>
<td>BP</td>
<td>Block 18 PCC Flexible Riser Feasibility Study</td>
</tr>
<tr>
<td>Wellstream</td>
<td>Åsgard Flexible Riser FEED</td>
</tr>
<tr>
<td>Subsea7</td>
<td>Total Shtokman Flexible Riser Mid-Water Arch Design</td>
</tr>
<tr>
<td>OGX</td>
<td>Tubarão Azul (OSX-2) and Tubarão Martelo (OSX-3) Subsea Engineering</td>
</tr>
<tr>
<td>Petrobras</td>
<td>Mid-Water Riser Transfer System</td>
</tr>
<tr>
<td>IntecSEA</td>
<td>Murphy Block H Riser FEED</td>
</tr>
<tr>
<td>DSME</td>
<td>FLNG Riser Engineering Support</td>
</tr>
<tr>
<td>IntecSEA</td>
<td>Chevron Bangka SCR and Flexible Riser FEED</td>
</tr>
</tbody>
</table>

Detailed Engineering

<table>
<thead>
<tr>
<th>Company</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Production and Water Injection Flexibles on Block 31 SLORs</td>
</tr>
<tr>
<td>Exxon</td>
<td>Production and Water Injection Flexibles on Kizomba SLORs</td>
</tr>
<tr>
<td>Total</td>
<td>Production and Water Injection Flexibles on Girassol Bundled Hybrid Risers</td>
</tr>
<tr>
<td>Doris</td>
<td>Total Moho Nord FTL Engineering Support</td>
</tr>
<tr>
<td>Tullow Oil</td>
<td>TEN Flexible Riser Engineering Support</td>
</tr>
<tr>
<td>Wellstream</td>
<td>Dai Hung Flexible Riser Global Analysis</td>
</tr>
<tr>
<td>Duco</td>
<td>CLOV Umbilical Analysis</td>
</tr>
<tr>
<td>Subsea7</td>
<td>BSR Flexible jumpers, risers and lazy-wave flexibles, for Petrobras Sapinhoá & Lula-NE</td>
</tr>
</tbody>
</table>

Procurement and Fabrication Management

<table>
<thead>
<tr>
<th>Company</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Production and Water Injection Flexibles on Foinaven Development</td>
</tr>
<tr>
<td>Petrobras</td>
<td>Production, WI and Export Flexibles for Marlim Sul P-38 (FPSO) and P-40 (Semi-Sub)</td>
</tr>
<tr>
<td>Petrobras</td>
<td>Flexible Risers on P-34 Pilot System for Barracuda/Caratinga Development</td>
</tr>
</tbody>
</table>

Learn more at www.2hoffshore.com
2H Offshore Experience (II)

MONITORING

<table>
<thead>
<tr>
<th>Company</th>
<th>Project/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>Block 18 Greater Plutonio G-Clamp Monitoring</td>
</tr>
<tr>
<td>PULSE</td>
<td>FlexAssure Internal Development</td>
</tr>
<tr>
<td>Petrobras</td>
<td>Flexible Riser Tension Test Failure Monitoring; P-19 Semi-Sub Flexible Monitoring</td>
</tr>
<tr>
<td>Wellstream</td>
<td>Dynamic Qualification Test Monitoring</td>
</tr>
</tbody>
</table>

INTEGRITY MANAGEMENT

<table>
<thead>
<tr>
<th>Company</th>
<th>IM Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>BP in-water IM for all Gulf of Mexico deepwater assets</td>
</tr>
<tr>
<td>Chevron</td>
<td>Chevron Genesis riser IM for Top Tensioned Risers (TTRs) in Gulf of Mexico</td>
</tr>
<tr>
<td>Murphy</td>
<td>Kikeh IM for Spar TTRs Offshore Malaysia</td>
</tr>
<tr>
<td>Hess</td>
<td>Floating systems and subsea IM gap assessment</td>
</tr>
<tr>
<td>Dubai Petroleum</td>
<td>Conductor IM for UAE fields</td>
</tr>
<tr>
<td>Chevron</td>
<td>Chevron asset IM program set-up support</td>
</tr>
<tr>
<td>Chevron</td>
<td>Chevron GoM inspection support</td>
</tr>
<tr>
<td>BP</td>
<td>Greater Plutonio Buoyancy Tank Hang-Off Clamp Assessment</td>
</tr>
</tbody>
</table>

INSTALLATION ENGINEERING

<table>
<thead>
<tr>
<th>Company</th>
<th>Services/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIS</td>
<td>Lufeng Flexible Riser Installation Analysis</td>
</tr>
<tr>
<td>Petrobras</td>
<td>Ubarana Shallow Water Flexible Lay</td>
</tr>
<tr>
<td>Berlian Mc Dermott</td>
<td>SNP Installation Engineering Support</td>
</tr>
<tr>
<td>Technip</td>
<td>Gumusut Kakap Flexible Riser Installation Engineering Support</td>
</tr>
<tr>
<td>Wellstream</td>
<td>P-26 Semi-Sub and P-34 FPSO Flexible Risers Pull-in Analysis</td>
</tr>
<tr>
<td>McDermott</td>
<td>Murphy Siakap North - Petal (SNP) Installation Analysis</td>
</tr>
</tbody>
</table>

VERIFICATION SERVICES

<table>
<thead>
<tr>
<th>Company</th>
<th>Services/Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tullow Oil</td>
<td>Jubilee Flexible Risers</td>
</tr>
<tr>
<td>Statoil</td>
<td>Peregrino Weight Aided Wave (WAW) Risers Re-Analysis Study</td>
</tr>
<tr>
<td>Helix Energy</td>
<td>Phoenix Flexible Lazy Wave Risers</td>
</tr>
<tr>
<td>ATP Oil & Gas</td>
<td>Gomez Oil Flexible Catenary Riser</td>
</tr>
<tr>
<td>ATP Oil & Gas</td>
<td>Telemark Oil Flexible Catenary Riser</td>
</tr>
<tr>
<td>Aften Okoro</td>
<td>Flexible Riser Verification</td>
</tr>
<tr>
<td>Technip</td>
<td>P-15/P-19/P-26/P-31/P-33/P-35/P-37 Flexible Risers Global and Fatigue Analysis</td>
</tr>
</tbody>
</table>
Questions?

Learn more at www.2hoffshore.com
Thank you

www.2hoffshore.com

Learn more at www.2hoffshore.com