Detailed Approach for the Assessment of Accumulated Wellhead Fatigue Event: Detailed Approach for the Assessment of Accumulated Wellhead Fatigue Date: September 2015 Author: K. Sunday, P. Ward, C. Griffin - 2H, P. Lorenson - Apache This paper presents a case study of the use of an enhanced analytical approach, combined with the use of structural monitoring, as an enabling technique in the planning of sidetrack operations on a well in 110m water depth in the Northern North Sea. Subsea wellheads are fatigue sensitive structures due to their exposure to dynamic loading transferred from connected riser systems. Intervention and workover operations over the life span of the well each contribute to the total fatigue damage accumulated in components that cannot be readily inspected. Accurate assessment of fatigue damage accumulation in ageing wells using advanced analytical techniques is often necessary to quantify the residual life of these components. The ability to reliably estimate this life can greatly affect the planning and viability of operations to enhance the productivity of ageing wells, particularly in the North Sea. A simplified screening approach to wave and current fatigue assessment, typically applied to new-drill wells, with comparatively fatigue resistant hardware is unlikely to be sufficient to provide the level of confidence required when planning intervention operations on a brownfield development featuring less fatigue resistant hardware. Further sophistication, more involved than the typical approach, is necessary to avoid over-conservatism and to provide confidence to proceed with the planned operations. To thoroughly assess the fatigue accumulation in an ageing well, a detailed operational history including hindcast or measured weather data is usually sourced. The assessment is conducted to ensure that the actual operational conditions during periods when risers were connected are as accurately represented as possible. However, this may not be sufficient to bring the resulting fatigue damage within the allowable limits set using the traditional code-defined factor of safety approach. In this scenario further analytical methods are required. The use of pre and post-failure analysis and the development of a monitoring strategy to maximise both the likelihood of identifying a fatigue failure during the operations and the ability to subsequently calibrate the analytical models are discussed. The applicability of these techniques to other operations and geographical locations is also described If you would like a copy of this technical paper register to download it (pop-up form). Back to All Technical Papers Services Deepwater Production Systems Riser Concept Engineering Steel Catenary Risers Top Tensioned Risers Hybrid Risers Flexible Pipes & Risers Composite Risers Subsea Flowlines & Jumpers Subsea Umbilicals System Verification & CVA Drilling, Completion & Workover Drilling Risers Drilling Riser Management Subsea Completion & Workover Risers Subsea Wellheads & Conductors Offshore Platform Conductors Platform Well Integrity & Life Extension Well Engineering Well Plug & Abandonment Integrity, Life Extension & Monitoring Riser Integrity & Life Extension Subsea Wellhead System & Life Extension Machine Learning for Riser Engineering Riser System Digital Twin Riser Monitoring System Engineering Riser Inspection, Maintenance & Repair Subsea Incident Engineering Fracture Mechanics and ECA Minimum Facility Platforms Conductor Supported Wellhead Platforms & CoSMOS Monopile Wellhead Platforms Exploration to Early Production Systems Structural Engineering Services Installation Engineering Decommissioning Engineering Riser Delivery Management Component Detailed Design Mechanical Connectors Systems & Qualification Testing Offshore Renewables & Alternative Resources Fixed Offshore Wind Floating Offshore Wind Deep Sea Mining Get the latest riser insights! Receive our riser news, published papers and blog posts in your inbox monthly. * Related Detailed Approach for the Assessment of Accumulated Wellhead Fatigue E Ditor, September 5, 2015 You may also be interested in... Blog Recruitment Hoax Emails